First principles study of magnetism induced by topological frustration of bowtie-shaped graphene nanoflake

被引:15
作者
Ge, Yang [1 ,2 ]
Ji, Jianlong [1 ,2 ]
Shen, Zhizhong [1 ,2 ]
Zhang, Qiang [1 ,2 ]
Jian, Aoqun [1 ,2 ]
Duan, Qianqian [1 ,2 ]
Wang, Chao [3 ]
Jiang, Jun [4 ]
Zhang, Wendong [1 ,2 ]
Sang, Shengbo [1 ,2 ]
机构
[1] Taiyuan Univ Technol, MicroNano Syst Res Ctr, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat Engn, Taiyuan 030024, Shanxi, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
[4] Beijing Comp Ctr, Beijing 100094, Peoples R China
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHOD; QUANTUM DOTS; ARMCHAIR EDGES; ZIGZAG;
D O I
10.1016/j.carbon.2017.11.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fine-tuning magnetic states by understanding topological frustration inducing magnetic mechanism should allow greater flexibility for the design of graphene-based spintronics. Based on first-principles calculations, it is predicted that bowtie-shaped graphene nanoflake (GNF) is of spin-polarized ground state exhibiting antiferromagnetic (AFM) ordering between two individual triangular GNFs. It is demonstrated that strength of antiferromagnetic coupling of both symmetric and asymmetric bowtie-shaped GNF displays strong zero-energy-state-orientated behavior due to non-trivial nature of topological frustration, with implications for designing graphene nanostructures with predefined magnetic states. It also proposes a specific example of structures that can serve as nanoscale molecular logic gates composed by asymmetric bowtie-shaped GNFs units, which augment the special antiferromagnetic function through structural configuration of multi-bowtie-shaped GNFs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 436
页数:5
相关论文
共 51 条
[1]   Electric-field control of magnetism in graphene quantum dots: Ab initio calculations [J].
Agapito, Luis A. ;
Kioussis, Nicholas ;
Kaxiras, Efthimios .
PHYSICAL REVIEW B, 2010, 82 (20)
[2]   Molecular spintronics using single-molecule magnets [J].
Bogani, Lapo ;
Wernsdorfer, Wolfgang .
NATURE MATERIALS, 2008, 7 (03) :179-186
[3]   Improved All-Carbon Spintronic Device Design [J].
Bullard, Zachary ;
Girao, Eduardo Costa ;
Owens, Jonathan R. ;
Shelton, William A. ;
Meunier, Vincent .
SCIENTIFIC REPORTS, 2015, 5
[4]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[5]   Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene [J].
Chua, Chun Kiang ;
Sofer, Zdenek ;
Simek, Petr ;
Jankovsky, Ondrej ;
Klimova, Katerina ;
Bakardjieva, Snejana ;
Kuckova, Stepanka Hrdlickova ;
Pumera, Martin .
ACS NANO, 2015, 9 (03) :2548-2555
[6]   Graphene Shape Control by Multistage Cutting and Transfer [J].
Ci, Lijie ;
Song, Li ;
Jariwala, Deep ;
Laura Elias, Ana ;
Gao, Wei ;
Terrones, Mauricio ;
Ajayan, Pulickel M. .
ADVANCED MATERIALS, 2009, 21 (44) :4487-+
[7]   Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations [J].
Deng, X. Q. ;
Zhang, Z. H. ;
Tang, G. P. ;
Fan, Z. Q. ;
Yang, C. H. .
CARBON, 2014, 66 :646-653
[8]   Topological frustration of artificial spin ice [J].
Drisko, Jasper ;
Marsh, Thomas ;
Cumings, John .
NATURE COMMUNICATIONS, 2017, 8
[9]   Electronic structures of graphene edges and nanographene [J].
Enoki, Toshiaki ;
Kobayashi, Yousuke ;
Fukui, Ken-Ichi .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :609-645
[10]   Zigzag and armchair edges in graphene [J].
Enoki, Toshiaki ;
Fujii, Shintaro ;
Takai, Kazuyuki .
CARBON, 2012, 50 (09) :3141-3145