Cofiniteness of local cohomology modules for ideals of small dimension

被引:102
作者
Bahmanpour, Kamal [2 ]
Naghipour, Reza [1 ,3 ]
机构
[1] Univ Tabriz, Dept Math, Tabriz, Iran
[2] Islamic Azad Univ, Ardebil Branch, Dept Math, Ardebil, Iran
[3] Inst Studies Theoret Phys & Math IPM, Sch Math, Tehran, Iran
关键词
Associated primes; Cofinite modules; Finiteness dimension; Cohomological dimension; Cominimax modules; Krull dimension; Local cohomology; Minimax modules; Weakly Laskerian modules;
D O I
10.1016/j.jalgebra.2008.12.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring and let M be a non-zero finitely generated R-module. Let 1 be an ideal of R and t a non-negative integer such that dim Supp H(1)(t) (M) <= 1 for all i < t. It is shown that the R-modules H(1)(0) (M), H(1)(t)(M),...,H(1)(t-1)(M) are 1-cofinite and the R-module Hom(R)(R/1, H(1)(t)(M)) is finitely generated. This immediately implies that if I has dimension one (i.e., dim R/1 = 1), then H(1)(t)(M) is 1-cofinite for all i >= 0. This is a generalization of the main results of Delfino and Marley [D. Delfino, T Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997) 45-52] and Yoshida [K.I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997) 179-191] for an arbitrary Noetherian ring R. Also, we prove that if R is local and dim Supp H(1)(t)(M) <= 2 for all i < t, then the R-modules Ext(R)(J)(R/1, H(1)(t)(M)) and Hom(R) (R/1, H(1)(t)(M)) are weakly Laskerian for all i < t and all j >= 0. As a consequence, it follows that the set of associated primes of H(1)(t)(M) is finite for all i >= 0, whenever dim R/1 <= 2. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1997 / 2021
页数:25
相关论文
共 6 条
[1]  
FOULSER DA, 1969, T AM MATH SOC, V143, P1
[2]  
Huppert B., 1982, FINITE GROUPS, VIII
[3]   Finite group elements where no irreducible character vanishes [J].
Isaacs, IM ;
Navarro, G ;
Wolf, TR .
JOURNAL OF ALGEBRA, 1999, 222 (02) :413-423
[4]  
Manz O., 1993, REPRESENTATION SOLVA
[5]   Orbit sizes, character degrees and Sylow subgroups [J].
Moretó, A ;
Wolf, TR .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :18-36
[6]  
WOLF T, 2004, FINITE GROUPS 2003