Robust State Estimation in Distribution Networks

被引:0
作者
Brinkmann, Bernd [1 ]
Negnevisky, Michael
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas, Australia
来源
PROCEEDINGS OF THE 2016 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC) | 2016年
关键词
Distribution network state estimation; load uncertainty; uncertainty quantification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a new approach to state estimation in distribution networks is proposed. This approach is more robust against large uncertainties of the state estimation inputs than the conventional method. Traditionally, the goal of state estimation was to estimate the exact value of network parameters, such as voltages and currents. This works well in transmission networks where many real time measurements are available. In distribution networks, however, only few real-time measurements are available. This means that the estimated state can be significantly different from the actual network state. Therefore, the focus of the proposed robust state estimation is shifted from estimating the exact values of the network parameters to the confidence that these parameters are within their respective constraints. This approach is able to provide useful results for distribution network operation, even if large uncertainties are present in the estimated network state.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Stochastic multi-objective ORPD for active distribution networks [J].
Karimi, Shahram ;
Hosseini-Hemati, Saman ;
Rastgou, Abdollah .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 57
[32]   Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI [J].
Consagra, William ;
Ning, Lipeng ;
Rathi, Yogesh .
MEDICAL IMAGE ANALYSIS, 2024, 93
[33]   Probabilistic load flow methodology for distribution networks including loads uncertainty [J].
Gruosso, Giambattista ;
Maffezzoni, Paolo ;
Zhang, Zheng ;
Daniel, Luca .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 106 :392-400
[34]   Compressed Machine Learning Models for the Uncertainty Quantification of Power Distribution Networks [J].
Memon, Zain Anwer ;
Trinchero, Riccardo ;
Manfredi, Paolo ;
Canavero, Flavio ;
Stievano, Igor S. .
ENERGIES, 2020, 13 (18)
[35]   Uncertainty estimation and evaluation of deformation image registration based convolutional neural networks [J].
Rivetti, Luciano ;
Studen, Andrej ;
Sharma, Manju ;
Chan, Jason ;
Jeraj, Robert .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11)
[36]   Information Aware max-norm Dirichlet networks for predictive uncertainty estimation [J].
Tsiligkaridis, Theodoros .
NEURAL NETWORKS, 2021, 135 :105-114
[37]   Uncertainty Estimation in Power Consumption of a Smart Home Using Bayesian LSTM Networks [J].
Zaman, Mostafa ;
Saha, Sujay ;
Zohrabi, Nasibeh ;
Abdelwahed, Sherif .
2022 IEEE INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP 2022), 2022, :120-125
[38]   Estimation of microtexture region orientation distribution functions using eddy current data [J].
Homa, Laura ;
Cherry, Matthew ;
Wertz, John .
INVERSE PROBLEMS, 2021, 37 (06)
[39]   Distribution System Behind-the-Meter DERs: Estimation, Uncertainty Quantification, and Control [J].
Srivastava, Ankur ;
Zhao, Junbo ;
Zhu, Hao ;
Ding, Fei ;
Lei, Shunbo ;
Zografopoulos, Ioannis ;
Haider, Rabab ;
Vahedi, Soroush ;
Wang, Wenyu ;
Valverde, Gustavo ;
Gomez-Exposito, Antonio ;
Dubey, Anamika ;
Konstantinou, Charalambos ;
Yu, Nanpeng ;
Brahma, Sukumar ;
Rodrigues, Yuri R. ;
Ben-Idris, Mohammed ;
Liu, Bin ;
Annaswamy, Anuradha ;
Bu, Fankun ;
Wang, Yishen ;
Espin-Sarzosa, Danny ;
Valencia, Felipe ;
Gabrielski, Jawana ;
Mohseni-Bonab, Seyed Masoud ;
Jazaeri, Javad ;
Wang, Zhaoyu ;
Srivastava, Anurag .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) :1060-1077
[40]   Robust Distribution Network Reconfiguration in the Presence of Distributed Generation Under Uncertainty in Demand and Load Variations [J].
Mahdavi, Meisam ;
Schmitt, Konrad Erich Kork ;
Jurado, Francisco .
IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (05) :3480-3495