A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease

被引:136
作者
de Vos, Frank [1 ,2 ,3 ]
Koini, Marisa [4 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Seiler, Stephan [4 ]
van der Grond, Jeroen [2 ]
Lechner, Anita [4 ]
Schmidt, Reinhold [4 ]
de Rooij, Mark [1 ,3 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiol, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[4] Med Univ Graz, Dept Neurol, Auenbruggerpl 22, A-8036 Graz, Austria
关键词
Resting state fMRI; Alzheimer's disease; Classification; Independent component analysis; Dual regression; Dynamic functional connectivity; MILD COGNITIVE IMPAIRMENT; DYNAMIC FUNCTIONAL CONNECTIVITY; INDEPENDENT COMPONENT ANALYSIS; EIGENVECTOR CENTRALITY; BRAIN ACTIVITY; NETWORK; CLASSIFICATION; MRI; IMPLEMENTATION; PREDICTION;
D O I
10.1016/j.neuroimage.2017.11.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) patients show altered patterns of functional connectivity (FC) on resting state functional magnetic resonance imaging (RSfMRI) scans. It is yet unclear which RSfMRI measures are most informative for the individual classification of AD patients. We investigated this using RSfMRI scans from 77 AD patients (MMSE = 20.4 +/- 4.5) and 173 controls (MMSE = 27.5 +/- 1.8). We calculated i) FC matrices between resting state components as obtained with independent component analysis (ICA), ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and iv) we distinguished five FC states and administered how long each subject resided in each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight measures were used separately as predictors in an elastic net logistic regression, and combined in a group lasso logistic regression model. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine classification performance. The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good AD classification using RSfMRI scans. FC matrices, FC dynamics and ALFF are most discriminative and the combination of all the resting state measures improves classification accuracy slightly.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 82 条
  • [51] pROC: an open-source package for R and S plus to analyze and compare ROC curves
    Robin, Xavier
    Turck, Natacha
    Hainard, Alexandre
    Tiberti, Natalia
    Lisacek, Frederique
    Sanchez, Jean-Charles
    Mueller, Markus
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [52] Complex network measures of brain connectivity: Uses and interpretations
    Rubinov, Mikail
    Sporns, Olaf
    [J]. NEUROIMAGE, 2010, 52 (03) : 1059 - 1069
  • [53] Automatic denoising of functional MM data: Combining independent component analysis and hierarchical fusion of classifiers
    Salimi-Khorshidi, Gholamreza
    Douaud, Gwenaelle
    Beckmann, Christian F.
    Glasser, Matthew F.
    Griffanti, Ludovica
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2014, 90 : 449 - 468
  • [54] Loss of 'Small-World' Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity
    Sanz-Arigita, Ernesto J.
    Schoonheim, Menno M.
    Damoiseaux, Jessica S.
    Rombouts, Serge A. R. B.
    Maris, Erik
    Barkhof, Frederik
    Scheltens, Philip
    Stam, Cornelis J.
    [J]. PLOS ONE, 2010, 5 (11):
  • [55] Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging
    Schouten, Tijn M.
    Koini, Marisa
    de Vos, Frank
    Seiler, Stephan
    de Rooij, Mark
    Lechner, Anita
    Schmidt, Reinhold
    van den Heuvel, Martijn
    van der Grond, Jeroen
    Rombouts, Serge A. R. B.
    [J]. NEUROIMAGE, 2017, 152 : 476 - 481
  • [56] Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease
    Schouten, Tijn M.
    Koini, Marisa
    de Vos, Frank
    Seiler, Stephan
    van der Grond, Jeroen
    Lechner, Anita
    Hafkemeijer, Anne
    Moller, Christiane
    Schmidt, Reinhold
    de Rooij, Mark
    Rombouts, Serge A. R. B.
    [J]. NEUROIMAGE-CLINICAL, 2016, 11 : 46 - 51
  • [57] Driving Cessation and Dementia: Results of the Prospective Registry on Dementia in Austria (PRODEM)
    Seiler, Stephan
    Schmidt, Helena
    Lechner, Anita
    Benke, Thomas
    Sanin, Guenter
    Ransmayr, Gerhard
    Lehner, Riccarda
    Dal-Bianco, Peter
    Santer, Peter
    Linortner, Patricia
    Eggers, Christian
    Haider, Bernhard
    Uranues, Margarete
    Marksteiner, Josef
    Leblhuber, Friedrich
    Kapeller, Peter
    Bancher, Christian
    Schmidt, Reinhold
    [J]. PLOS ONE, 2012, 7 (12):
  • [58] Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults
    Shaw, Emily E.
    Schultz, Aaron P.
    Sperling, Reisa A.
    Hedden, Trey
    [J]. BRAIN CONNECTIVITY, 2015, 5 (08) : 505 - 516
  • [59] Resting State Functional Connectivity in Preclinical Alzheimer's Disease
    Sheline, Yvette I.
    Raichle, Marcus E.
    [J]. BIOLOGICAL PSYCHIATRY, 2013, 74 (05) : 340 - 347
  • [60] APOE4 Allele Disrupts Resting State fMRI Connectivity in the Absence of Amyloid Plaques or Decreased CSF Aβ42
    Sheline, Yvette I.
    Morris, John C.
    Snyder, Abraham Z.
    Price, Joseph L.
    Yan, Zhizi
    D'Angelo, Gina
    Liu, Collin
    Dixit, Sachin
    Benzinger, Tammie
    Fagan, Anne
    Goate, Alison
    Mintun, Mark A.
    [J]. JOURNAL OF NEUROSCIENCE, 2010, 30 (50) : 17035 - 17040