A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease

被引:136
作者
de Vos, Frank [1 ,2 ,3 ]
Koini, Marisa [4 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Seiler, Stephan [4 ]
van der Grond, Jeroen [2 ]
Lechner, Anita [4 ]
Schmidt, Reinhold [4 ]
de Rooij, Mark [1 ,3 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiol, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[4] Med Univ Graz, Dept Neurol, Auenbruggerpl 22, A-8036 Graz, Austria
关键词
Resting state fMRI; Alzheimer's disease; Classification; Independent component analysis; Dual regression; Dynamic functional connectivity; MILD COGNITIVE IMPAIRMENT; DYNAMIC FUNCTIONAL CONNECTIVITY; INDEPENDENT COMPONENT ANALYSIS; EIGENVECTOR CENTRALITY; BRAIN ACTIVITY; NETWORK; CLASSIFICATION; MRI; IMPLEMENTATION; PREDICTION;
D O I
10.1016/j.neuroimage.2017.11.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) patients show altered patterns of functional connectivity (FC) on resting state functional magnetic resonance imaging (RSfMRI) scans. It is yet unclear which RSfMRI measures are most informative for the individual classification of AD patients. We investigated this using RSfMRI scans from 77 AD patients (MMSE = 20.4 +/- 4.5) and 173 controls (MMSE = 27.5 +/- 1.8). We calculated i) FC matrices between resting state components as obtained with independent component analysis (ICA), ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and iv) we distinguished five FC states and administered how long each subject resided in each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight measures were used separately as predictors in an elastic net logistic regression, and combined in a group lasso logistic regression model. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine classification performance. The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good AD classification using RSfMRI scans. FC matrices, FC dynamics and ALFF are most discriminative and the combination of all the resting state measures improves classification accuracy slightly.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 82 条
  • [1] Resting state fMRI in Alzheimer's disease: beyond the default mode network
    Agosta, Federica
    Pievani, Michela
    Geroldi, Cristina
    Copetti, Massimiliano
    Frisoni, Giovanni B.
    Filippi, Massimo
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (08) : 1564 - 1578
  • [2] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [3] Reduced hippocampal functional connectivity in Alzheimer disease
    Allen, Greg
    Barnard, Holly
    McColl, Roderick
    Hester, Andrea L.
    Fields, Julie A.
    Weiner, Myron F.
    Ringe, Wendy K.
    Lipton, Anne M.
    Brooker, Matthew
    McDonald, Elizabeth
    Rubin, Craig D.
    Cullum, C. Munro
    [J]. ARCHIVES OF NEUROLOGY, 2007, 64 (10) : 1482 - 1487
  • [4] [Anonymous], 2004, Machine Learning
  • [5] [Anonymous], 2000, Quick Reference to the Diagnostic Criteria From DSM-IV-TR
  • [6] Probabilistic independent component analysis for functional magnetic resonance imaging
    Beckmann, CF
    Smith, SA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 137 - 152
  • [7] Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers
    Binnewijzend, Maja A. A.
    Adriaanse, Sofie M.
    Van der Flier, Wiesje M.
    Teunissen, Charlotte E.
    de Munck, Jan C.
    Stam, Cornelis J.
    Scheltens, Philip
    van Berckel, Bart N. M.
    Barkhof, Frederik
    Wink, Alle Meije
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (05) : 2383 - 2393
  • [8] Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment
    Binnewijzend, Maja A. A.
    Schoonheim, Menno M.
    Sanz-Arigita, Ernesto
    Wink, Alle Meije
    van der Flier, Wiesje M.
    Tolboom, Nelleke
    Adriaanse, Sofie M.
    Damoiseaux, Jessica S.
    Scheltens, Philip
    van Berckel, Bart N. M.
    Barkhof, Frederik
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (09) : 2018 - 2028
  • [9] Toward discovery science of human brain function
    Biswal, Bharat B.
    Mennes, Maarten
    Zuo, Xi-Nian
    Gohel, Suril
    Kelly, Clare
    Smith, Steve M.
    Beckmann, Christian F.
    Adelstein, Jonathan S.
    Buckner, Randy L.
    Colcombe, Stan
    Dogonowski, Anne-Marie
    Ernst, Monique
    Fair, Damien
    Hampson, Michelle
    Hoptman, Matthew J.
    Hyde, James S.
    Kiviniemi, Vesa J.
    Kotter, Rolf
    Li, Shi-Jiang
    Lin, Ching-Po
    Lowe, Mark J.
    Mackay, Clare
    Madden, David J.
    Madsen, Kristoffer H.
    Margulies, Daniel S.
    Mayberg, Helen S.
    McMahon, Katie
    Monk, Christopher S.
    Mostofsky, Stewart H.
    Nagel, Bonnie J.
    Pekar, James J.
    Peltier, Scott J.
    Petersen, Steven E.
    Riedl, Valentin
    Rombouts, Serge A. R. B.
    Rypma, Bart
    Schlaggar, Bradley L.
    Schmidt, Sein
    Seidler, Rachael D.
    Siegle, Greg J.
    Sorg, Christian
    Teng, Gao-Jun
    Veijola, Juha
    Villringer, Arno
    Walter, Martin
    Wang, Lihong
    Weng, Xu-Chu
    Whitfield-Gabrieli, Susan
    Williamson, Peter
    Windischberger, Christian
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) : 4734 - 4739
  • [10] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159