A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease

被引:142
作者
de Vos, Frank [1 ,2 ,3 ]
Koini, Marisa [4 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Seiler, Stephan [4 ]
van der Grond, Jeroen [2 ]
Lechner, Anita [4 ]
Schmidt, Reinhold [4 ]
de Rooij, Mark [1 ,3 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiol, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
[4] Med Univ Graz, Dept Neurol, Auenbruggerpl 22, A-8036 Graz, Austria
关键词
Resting state fMRI; Alzheimer's disease; Classification; Independent component analysis; Dual regression; Dynamic functional connectivity; MILD COGNITIVE IMPAIRMENT; DYNAMIC FUNCTIONAL CONNECTIVITY; INDEPENDENT COMPONENT ANALYSIS; EIGENVECTOR CENTRALITY; BRAIN ACTIVITY; NETWORK; CLASSIFICATION; MRI; IMPLEMENTATION; PREDICTION;
D O I
10.1016/j.neuroimage.2017.11.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) patients show altered patterns of functional connectivity (FC) on resting state functional magnetic resonance imaging (RSfMRI) scans. It is yet unclear which RSfMRI measures are most informative for the individual classification of AD patients. We investigated this using RSfMRI scans from 77 AD patients (MMSE = 20.4 +/- 4.5) and 173 controls (MMSE = 27.5 +/- 1.8). We calculated i) FC matrices between resting state components as obtained with independent component analysis (ICA), ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and iv) we distinguished five FC states and administered how long each subject resided in each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight measures were used separately as predictors in an elastic net logistic regression, and combined in a group lasso logistic regression model. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine classification performance. The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good AD classification using RSfMRI scans. FC matrices, FC dynamics and ALFF are most discriminative and the combination of all the resting state measures improves classification accuracy slightly.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 82 条
[1]   Resting state fMRI in Alzheimer's disease: beyond the default mode network [J].
Agosta, Federica ;
Pievani, Michela ;
Geroldi, Cristina ;
Copetti, Massimiliano ;
Frisoni, Giovanni B. ;
Filippi, Massimo .
NEUROBIOLOGY OF AGING, 2012, 33 (08) :1564-1578
[2]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[3]   Reduced hippocampal functional connectivity in Alzheimer disease [J].
Allen, Greg ;
Barnard, Holly ;
McColl, Roderick ;
Hester, Andrea L. ;
Fields, Julie A. ;
Weiner, Myron F. ;
Ringe, Wendy K. ;
Lipton, Anne M. ;
Brooker, Matthew ;
McDonald, Elizabeth ;
Rubin, Craig D. ;
Cullum, C. Munro .
ARCHIVES OF NEUROLOGY, 2007, 64 (10) :1482-1487
[4]  
[Anonymous], 2004, Machine Learning
[5]  
[Anonymous], 2000, Quick Reference to the Diagnostic Criteria From DSM-IV-TR
[6]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[7]   Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers [J].
Binnewijzend, Maja A. A. ;
Adriaanse, Sofie M. ;
Van der Flier, Wiesje M. ;
Teunissen, Charlotte E. ;
de Munck, Jan C. ;
Stam, Cornelis J. ;
Scheltens, Philip ;
van Berckel, Bart N. M. ;
Barkhof, Frederik ;
Wink, Alle Meije .
HUMAN BRAIN MAPPING, 2014, 35 (05) :2383-2393
[8]   Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment [J].
Binnewijzend, Maja A. A. ;
Schoonheim, Menno M. ;
Sanz-Arigita, Ernesto ;
Wink, Alle Meije ;
van der Flier, Wiesje M. ;
Tolboom, Nelleke ;
Adriaanse, Sofie M. ;
Damoiseaux, Jessica S. ;
Scheltens, Philip ;
van Berckel, Bart N. M. ;
Barkhof, Frederik .
NEUROBIOLOGY OF AGING, 2012, 33 (09) :2018-2028
[9]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[10]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159