A bayesian inference procedure based on inverse dispersion modelling for source term estimation in built-up environments

被引:0
作者
Septier, Francois [1 ]
Armand, Patrick [2 ]
Duchenne, Christophe [2 ]
机构
[1] Univ Bretagne Sud, CNRS, LMBA, UMR 6205, F-56000 Vannes, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
Bayesian inference; Monte Carlo; STE; Inverse dispersion model; URBAN; RECONSTRUCTION; IDENTIFICATION;
D O I
10.1016/j.atmosenv.2020.117793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In atmospheric physics, reconstructing a pollution source is a challenging and important question. It provides better input parameters to dispersion models, and gives useful information to first-responder teams in case of an accidental toxic release. Various methods already exist, but using them requires an important amount of computational resources, especially when the accuracy of the dispersion model increases which is necessary in complex built-up environments. In this paper, a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source is proposed. More precisely, an Adaptive Multiple Importance Sampling (AMIS) algorithm is considered and enhanced by an efficient use of a Lagrangian Particle Dispersion Model (LPDM) in backward mode. Twin experiments empirically demonstrate the efficiency of the proposed inference strategy in very complex cases.
引用
收藏
页数:13
相关论文
共 30 条
[1]  
Armand P., 2013, P 15 INT C HARMONISA, P789
[2]   Inverse modelling of atmospheric tracers: non-Gaussian methods and second-order sensitivity analysis [J].
Bocquet, M. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (01) :127-143
[3]  
Bocquet M., 2012, TELLUS, V64, P1, DOI [http://dx.doi.org/10.3402/tellusb.v64i0.190471, DOI 10.3402/TELLUSB.V64I0.190471]
[4]   Adaptive Importance Sampling The past, the present, and the future [J].
Bugallo, Monica F. ;
Elvira, Victor ;
Martino, Luca ;
Luengo, David ;
Miguez, Joaquin ;
Djuric, Petar M. .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :60-79
[5]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929
[6]   Adaptive importance sampling in general mixture classes [J].
Cappe, Olivier ;
Douc, Randal ;
Guillin, Arnaud ;
Marin, Jean-Michel ;
Robert, Christian P. .
STATISTICS AND COMPUTING, 2008, 18 (04) :447-459
[7]   Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment [J].
Castelli, S. Trini ;
Armand, P. ;
Tinarelli, G. ;
Duchenne, C. ;
Nibart, M. .
ATMOSPHERIC ENVIRONMENT, 2018, 193 :273-289
[8]   Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations [J].
Chow, Fotini Katopodes ;
Kosovic, Branko ;
Chan, Stevens .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) :1553-1572
[9]   Adaptive Multiple Importance Sampling [J].
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Mira, Antonietta ;
Robert, Christian P. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) :798-812
[10]   Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale [J].
Delle Monache, Luca ;
Lundquist, Julie K. ;
Kosovic, Branko ;
Johannesson, Gardar ;
Dyer, Kathleen M. ;
Aines, Roger D. ;
Chow, Fotini K. ;
Belles, Rich D. ;
Hanley, William G. ;
Larsen, Shawn C. ;
Loosmore, Gwen A. ;
Nitao, John J. ;
Sugiyama, Gayle A. ;
Vogt, Philip J. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (10) :2600-2613