Sub-Laplacian Eigenvalue Bounds on CR Manifolds

被引:9
作者
Kokarev, Gerasim [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Counting function; CR manifold; Eigenvalues; Sub-Laplacian; VECTOR-FIELDS; THEOREMS; SPACES; METRICS;
D O I
10.1080/03605302.2013.831447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper bounds for sub-Laplacian eigenvalues independent of a pseudo-Hermitian structure on a CR manifold. These bounds are compatible with the Menikoff-Sjostrand asymptotic law, and can be viewed as a CR version of Korevaar's bounds for Laplace eigenvalues of conformal metrics.
引用
收藏
页码:1971 / 1984
页数:14
相关论文
共 50 条
[41]   BOUNDS FOR EIGENFUNCTIONS OF THE LAPLACIAN ON NONCOMPACT RIEMANNIAN MANIFOLDS [J].
Cianchi, Andrea ;
Maz'ya, Vladimir G. .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (03) :579-635
[42]   The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation [J].
Corni, Francesca ;
Ferrari, Fausto .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
[43]   Nonnegative solutions of a fractional sub-Laplacian differential inequality on Heisenberg group [J].
Liu, Y. ;
Wang, Y. ;
Xiao, J. .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2015, 12 (04) :379-403
[44]   Laplacian eigenvalue functionals and metric deformations on compact manifolds [J].
El Soufi, Ahmad ;
Ifias, Said .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (01) :89-104
[45]   Upper Bounds on the First Eigenvalue for the p-Laplacian [J].
Li, Zhi ;
Huang, Guangyue .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (04)
[46]   Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups [J].
Ruzhansky, Michael ;
Tokmagambetov, Niyaz .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (10) :5212-5236
[47]   A note on eigenvalue bounds for non-compact manifolds [J].
Keller, Matthias ;
Liu, Shiping ;
Peyerimhoff, Norbert .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (06) :1134-1139
[48]   Positive Curvature Property for Sub-Laplacian on Nilpotent Lie Group of Rank Two [J].
Bin Qian .
Potential Analysis, 2013, 39 :325-340
[49]   Positive Curvature Property for Sub-Laplacian on Nilpotent Lie Group of Rank Two [J].
Qian, Bin .
POTENTIAL ANALYSIS, 2013, 39 (04) :325-340
[50]   Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue [J].
Cho, SY .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (03) :321-360