Sub-Laplacian Eigenvalue Bounds on CR Manifolds

被引:9
作者
Kokarev, Gerasim [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Counting function; CR manifold; Eigenvalues; Sub-Laplacian; VECTOR-FIELDS; THEOREMS; SPACES; METRICS;
D O I
10.1080/03605302.2013.831447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper bounds for sub-Laplacian eigenvalues independent of a pseudo-Hermitian structure on a CR manifold. These bounds are compatible with the Menikoff-Sjostrand asymptotic law, and can be viewed as a CR version of Korevaar's bounds for Laplace eigenvalues of conformal metrics.
引用
收藏
页码:1971 / 1984
页数:14
相关论文
共 50 条
[31]   ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS [J].
Niu Pengcheng ;
Wang Jialin .
ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) :1776-1784
[32]   Carnot geometry and the resolvent of the sub-Laplacian for the Heisenberg group [J].
Perry, PA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :745-769
[33]   Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold [J].
Davide Barilari ;
Karen Habermann .
Nonlinear Differential Equations and Applications NoDEA, 2024, 31
[34]   Powers of Sub-Laplacian on Step Two Nilpotent Lie Groups [J].
Kumar, Ajay ;
Mishra, Mukund Madhav .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1559-1570
[35]   Dirichlet and Neumann eigenvalue problems on CR manifolds [J].
Amine Aribi ;
Sorin Dragomir .
Ricerche di Matematica, 2018, 67 :285-320
[36]   Powers of Sub-Laplacian on Step Two Nilpotent Lie Groups [J].
Ajay Kumar ;
Mukund Madhav Mishra .
Journal of Geometric Analysis, 2013, 23 :1559-1570
[37]   Spectral zeta function of the sub-Laplacian on two step nilmanifolds [J].
Bauer, W. ;
Furutani, K. ;
Iwasaki, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03) :242-261
[38]   Weyl Transforms and the Heat Equation for the Sub-Laplacian on the Heisenberg Group [J].
Dasgupta, Aparajita ;
Wong, M. W. .
NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 :33-42
[39]   Lower bounds for the first eigenvalue of Laplacian on graphs [J].
Meng, LianChen ;
Lin, Yong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
[40]   Lower bounds for the first eigenvalue of the magnetic Laplacian [J].
Colbois, Bruno ;
Savo, Alessandro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (10) :2818-2845