Sub-Laplacian Eigenvalue Bounds on CR Manifolds

被引:9
作者
Kokarev, Gerasim [1 ]
机构
[1] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Counting function; CR manifold; Eigenvalues; Sub-Laplacian; VECTOR-FIELDS; THEOREMS; SPACES; METRICS;
D O I
10.1080/03605302.2013.831447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper bounds for sub-Laplacian eigenvalues independent of a pseudo-Hermitian structure on a CR manifold. These bounds are compatible with the Menikoff-Sjostrand asymptotic law, and can be viewed as a CR version of Korevaar's bounds for Laplace eigenvalues of conformal metrics.
引用
收藏
页码:1971 / 1984
页数:14
相关论文
共 50 条
[21]   Spectral zeta function of a sub-Laplacian on product sub-Riemannian manifolds and zeta-regularized determinant [J].
Bauer, Wolfram ;
Furutani, Kenro .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (09) :1209-1234
[22]   A LICHNEROWICZ ESTIMATE FOR THE SPECTRAL GAP OF A SUB-LAPLACIAN [J].
Berge, Stine Marie ;
Grong, Erlend .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) :5153-5166
[23]   OPTIMAL REGULARITY OF SOLUTIONS TO NO-SIGN OBSTACLE-TYPE PROBLEMS FOR THE SUB-LAPLACIAN [J].
Magnani, Valentino ;
Minne, Andreas .
ANALYSIS & PDE, 2022, 15 (06) :1429-1456
[24]   On fundamental solution for powers of the sub-Laplacian on the Heisenberg group [J].
Wang, Hai-meng ;
Wu, Qing-yan .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (03) :365-378
[25]   Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold [J].
Barilari, Davide ;
Habermann, Karen .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01)
[26]   On fundamental solution for powers of the sub-Laplacian on the Heisenberg group [J].
WANG Haimeng ;
WU Qingyan .
AppliedMathematics:AJournalofChineseUniversities, 2017, 32 (03) :365-378
[27]   On fundamental solution for powers of the sub-Laplacian on the Heisenberg group [J].
Hai-meng Wang ;
Qing-yan Wu .
Applied Mathematics-A Journal of Chinese Universities, 2017, 32 :365-378
[28]   An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group [J].
Wang, Haimeng ;
Wang, Bei .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
[29]   ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS [J].
钮鹏程 ;
王家林 .
Acta Mathematica Scientia, 2010, 30 (05) :1776-1784
[30]   An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group [J].
Haimeng Wang ;
Bei Wang .
Advances in Applied Clifford Algebras, 2022, 32