Note on Antipodal (Hamiltonian) Chromatic Number of Paths

被引:0
作者
Shen, Yufa [1 ]
Chen, Zuoli [1 ]
Zhang, Lingmin [1 ]
Guo, Jun
机构
[1] Hebei Normal Univ Sci & Technol, Dept Math, Qinhuangdao 066004, Peoples R China
来源
PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES | 2010年 / 9卷
关键词
Radio colorings; Antipodal chromatic number; Hamiltonian chromatic number; Paths; COLORINGS;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
For paths P-n, Khennoufa and Togni gave that ac(P-n) = 2p(2) - 2p + 3 if n = 2p + 1, and ac(P-n) = 2p(2) - 4p+5 if n = 2p, which disproved a conjecture posed by Chartrand, Erwin and Zhang, for antipodal chromatic number of Pn for all integer n >= 7. In this paper, by an in-depth analysis, we show that the result of Khennoufa and Togni is true, but their proof for the case n = 2p is not correct, and present a corrective proof for the result ac(P-n) = 2p(2) - 4p + 5 if n = 2p. As the hamiltonian chromatic number of P-n is equal to ac(P-n), the result of this paper also gives the exact value of hamiltonian chromatic number of P-n.
引用
收藏
页码:503 / 506
页数:4
相关论文
共 12 条
[11]  
van den Heuvel J, 1998, J GRAPH THEOR, V29, P263, DOI 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO
[12]  
2-V