The HTPmod Shiny application enables modeling and visualization of large-scale biological data

被引:14
作者
Chen, Dijun [1 ,2 ]
Fu, Liang-Yu [1 ]
Hu, Dahui [3 ]
Klukas, Christian [2 ,4 ]
Chen, Ming [3 ]
Kaufmann, Kerstin [1 ]
机构
[1] Humboldt Univ, Inst Biol, Dept Plant Cell & Mol Biol, D-10115 Berlin, Germany
[2] Leibniz Inst Plant Genet & Crop Plant Res IPK, Corrensstr 3, D-06466 Gatersleben, Germany
[3] Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Zhejiang, Peoples R China
[4] BASF SE, Digitalizat Res & Dev ROM, D-67056 Ludwigshafen, Germany
关键词
GENE-EXPRESSION; INTEGRATIVE ANALYSIS; TRANSCRIPTOME; DNA; PHENOMICS; RESPONSES; DYNAMICS; PLATFORM; TOMATO; SYSTEM;
D O I
10.1038/s42003-018-0091-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The wave of high-throughput technologies in genomics and phenomics are enabling data to be generated on an unprecedented scale and at a reasonable cost. Exploring the large-scale data sets generated by these technologies to derive biological insights requires efficient bioinformatic tools. Here we introduce an interactive, open-source web application (HTPmod) for high-throughput biological data modeling and visualization. HTPmod is implemented with the Shiny framework by integrating the computational power and professional visualization of R and including various machine-learning approaches. We demonstrate that HTPmod can be used for modeling and visualizing large-scale, high-dimensional data sets (such as multiple omics data) under a broad context. By reinvestigating example data sets from recent studies, we find not only that HTPmod can reproduce results from the original studies in a straightforward fashion and within a reasonable time, but also that novel insights may be gained from fast reinvestigation of existing data by HTPmod.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[2]  
[Anonymous], BIORXIV
[3]   Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping [J].
Arend, Daniel ;
Lange, Matthias ;
Pape, Jean-Michel ;
Weigelt-Fischer, Kathleen ;
Arana-Ceballos, Fernando ;
Muecke, Ingo ;
Klukas, Christian ;
Altmann, Thomas ;
Scholz, Uwe ;
Junker, Astrid .
SCIENTIFIC DATA, 2016, 3
[4]   Hyperspectral and Thermal Imaging of Oilseed Rape (Brassica napus) Response to Fungal Species of the Genus Alternaria [J].
Baranowski, Piotr ;
Jedryczka, Malgorzata ;
Mazurek, Wojciech ;
Babula-Skowronska, Danuta ;
Siedliska, Anna ;
Kaczmarek, Joanna .
PLOS ONE, 2015, 10 (03)
[5]   Diversity and dynamics of the Drosophila transcriptome [J].
Brown, James B. ;
Boley, Nathan ;
Eisman, Robert ;
May, Gemma E. ;
Stoiber, Marcus H. ;
Duff, Michael O. ;
Booth, Ben W. ;
Wen, Jiayu ;
Park, Soo ;
Suzuki, Ana Maria ;
Wan, Kenneth H. ;
Yu, Charles ;
Zhang, Dayu ;
Carlson, Joseph W. ;
Cherbas, Lucy ;
Eads, Brian D. ;
Miller, David ;
Mockaitis, Keithanne ;
Roberts, Johnny ;
Davis, Carrie A. ;
Frise, Erwin ;
Hammonds, Ann S. ;
Olson, Sara ;
Shenker, Sol ;
Sturgill, David ;
Samsonova, Anastasia A. ;
Weiszmann, Richard ;
Robinson, Garret ;
Hernandez, Juan ;
Andrews, Justen ;
Bickel, Peter J. ;
Carninci, Piero ;
Cherbas, Peter ;
Gingeras, Thomas R. ;
Hoskins, Roger A. ;
Kaufman, Thomas C. ;
Lai, Eric C. ;
Oliver, Brian ;
Perrimon, Norbert ;
Graveley, Brenton R. ;
Celniker, Susan E. .
NATURE, 2014, 512 (7515) :393-399
[6]   Predicting plant biomass accumulation from image-derived parameters [J].
Chen, Dijun ;
Shi, Rongli ;
Pape, Jean-Michel ;
Neumann, Kerstin ;
Arend, Daniel ;
Graner, Andreas ;
Chen, Ming ;
Klukas, Christian .
GIGASCIENCE, 2018, 7 (02)
[7]   Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis [J].
Chen, Dijun ;
Neumann, Kerstin ;
Friedel, Swetlana ;
Kilian, Benjamin ;
Chen, Ming ;
Altmann, Thomas ;
Klukas, Christian .
PLANT CELL, 2014, 26 (12) :4636-4655
[8]   Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development [J].
Chen, Jian ;
Zeng, Biao ;
Zhang, Mei ;
Xie, Shaojun ;
Wang, Gaokui ;
Hauck, Andrew ;
Lai, Jinsheng .
PLANT PHYSIOLOGY, 2014, 166 (01) :252-264
[9]   Understanding transcriptional regulation by integrative analysis of transcription factor binding data [J].
Cheng, Chao ;
Alexander, Roger ;
Min, Renqiang ;
Leng, Jing ;
Yip, Kevin Y. ;
Rozowsky, Joel ;
Yan, Koon-Kiu ;
Dong, Xianjun ;
Djebali, Sarah ;
Ruan, Yijun ;
Davis, Carrie A. ;
Carninci, Piero ;
Lassman, Timo ;
Gingerasi, Thomas R. ;
Guigo, Roderic ;
Birney, Ewan ;
Weng, Zhiping ;
Snyder, Michael ;
Gerstein, Mark .
GENOME RESEARCH, 2012, 22 (09) :1658-1667
[10]   A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets [J].
Cheng, Chao ;
Yan, Koon-Kiu ;
Yip, Kevin Y. ;
Rozowsky, Joel ;
Alexander, Roger ;
Shou, Chong ;
Gerstein, Mark .
GENOME BIOLOGY, 2011, 12 (02)