The HTPmod Shiny application enables modeling and visualization of large-scale biological data

被引:14
作者
Chen, Dijun [1 ,2 ]
Fu, Liang-Yu [1 ]
Hu, Dahui [3 ]
Klukas, Christian [2 ,4 ]
Chen, Ming [3 ]
Kaufmann, Kerstin [1 ]
机构
[1] Humboldt Univ, Inst Biol, Dept Plant Cell & Mol Biol, D-10115 Berlin, Germany
[2] Leibniz Inst Plant Genet & Crop Plant Res IPK, Corrensstr 3, D-06466 Gatersleben, Germany
[3] Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Zhejiang, Peoples R China
[4] BASF SE, Digitalizat Res & Dev ROM, D-67056 Ludwigshafen, Germany
关键词
GENE-EXPRESSION; INTEGRATIVE ANALYSIS; TRANSCRIPTOME; DNA; PHENOMICS; RESPONSES; DYNAMICS; PLATFORM; TOMATO; SYSTEM;
D O I
10.1038/s42003-018-0091-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The wave of high-throughput technologies in genomics and phenomics are enabling data to be generated on an unprecedented scale and at a reasonable cost. Exploring the large-scale data sets generated by these technologies to derive biological insights requires efficient bioinformatic tools. Here we introduce an interactive, open-source web application (HTPmod) for high-throughput biological data modeling and visualization. HTPmod is implemented with the Shiny framework by integrating the computational power and professional visualization of R and including various machine-learning approaches. We demonstrate that HTPmod can be used for modeling and visualizing large-scale, high-dimensional data sets (such as multiple omics data) under a broad context. By reinvestigating example data sets from recent studies, we find not only that HTPmod can reproduce results from the original studies in a straightforward fashion and within a reasonable time, but also that novel insights may be gained from fast reinvestigation of existing data by HTPmod.
引用
收藏
页数:8
相关论文
共 48 条
  • [1] Deep learning for computational biology
    Angermueller, Christof
    Parnamaa, Tanel
    Parts, Leopold
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
  • [2] [Anonymous], BIORXIV
  • [3] Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping
    Arend, Daniel
    Lange, Matthias
    Pape, Jean-Michel
    Weigelt-Fischer, Kathleen
    Arana-Ceballos, Fernando
    Muecke, Ingo
    Klukas, Christian
    Altmann, Thomas
    Scholz, Uwe
    Junker, Astrid
    [J]. SCIENTIFIC DATA, 2016, 3
  • [4] Hyperspectral and Thermal Imaging of Oilseed Rape (Brassica napus) Response to Fungal Species of the Genus Alternaria
    Baranowski, Piotr
    Jedryczka, Malgorzata
    Mazurek, Wojciech
    Babula-Skowronska, Danuta
    Siedliska, Anna
    Kaczmarek, Joanna
    [J]. PLOS ONE, 2015, 10 (03):
  • [5] Diversity and dynamics of the Drosophila transcriptome
    Brown, James B.
    Boley, Nathan
    Eisman, Robert
    May, Gemma E.
    Stoiber, Marcus H.
    Duff, Michael O.
    Booth, Ben W.
    Wen, Jiayu
    Park, Soo
    Suzuki, Ana Maria
    Wan, Kenneth H.
    Yu, Charles
    Zhang, Dayu
    Carlson, Joseph W.
    Cherbas, Lucy
    Eads, Brian D.
    Miller, David
    Mockaitis, Keithanne
    Roberts, Johnny
    Davis, Carrie A.
    Frise, Erwin
    Hammonds, Ann S.
    Olson, Sara
    Shenker, Sol
    Sturgill, David
    Samsonova, Anastasia A.
    Weiszmann, Richard
    Robinson, Garret
    Hernandez, Juan
    Andrews, Justen
    Bickel, Peter J.
    Carninci, Piero
    Cherbas, Peter
    Gingeras, Thomas R.
    Hoskins, Roger A.
    Kaufman, Thomas C.
    Lai, Eric C.
    Oliver, Brian
    Perrimon, Norbert
    Graveley, Brenton R.
    Celniker, Susan E.
    [J]. NATURE, 2014, 512 (7515) : 393 - 399
  • [6] Predicting plant biomass accumulation from image-derived parameters
    Chen, Dijun
    Shi, Rongli
    Pape, Jean-Michel
    Neumann, Kerstin
    Arend, Daniel
    Graner, Andreas
    Chen, Ming
    Klukas, Christian
    [J]. GIGASCIENCE, 2018, 7 (02):
  • [7] Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis
    Chen, Dijun
    Neumann, Kerstin
    Friedel, Swetlana
    Kilian, Benjamin
    Chen, Ming
    Altmann, Thomas
    Klukas, Christian
    [J]. PLANT CELL, 2014, 26 (12) : 4636 - 4655
  • [8] Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development
    Chen, Jian
    Zeng, Biao
    Zhang, Mei
    Xie, Shaojun
    Wang, Gaokui
    Hauck, Andrew
    Lai, Jinsheng
    [J]. PLANT PHYSIOLOGY, 2014, 166 (01) : 252 - 264
  • [9] Understanding transcriptional regulation by integrative analysis of transcription factor binding data
    Cheng, Chao
    Alexander, Roger
    Min, Renqiang
    Leng, Jing
    Yip, Kevin Y.
    Rozowsky, Joel
    Yan, Koon-Kiu
    Dong, Xianjun
    Djebali, Sarah
    Ruan, Yijun
    Davis, Carrie A.
    Carninci, Piero
    Lassman, Timo
    Gingerasi, Thomas R.
    Guigo, Roderic
    Birney, Ewan
    Weng, Zhiping
    Snyder, Michael
    Gerstein, Mark
    [J]. GENOME RESEARCH, 2012, 22 (09) : 1658 - 1667
  • [10] A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets
    Cheng, Chao
    Yan, Koon-Kiu
    Yip, Kevin Y.
    Rozowsky, Joel
    Alexander, Roger
    Shou, Chong
    Gerstein, Mark
    [J]. GENOME BIOLOGY, 2011, 12 (02):