MicroRNAs in farm animals

被引:43
作者
Wang, X. [1 ,2 ]
Gu, Z. [1 ]
Jiang, H. [3 ]
机构
[1] Changshu Inst Technol, Dept Life Sci & Technol, Changshu 215500, Peoples R China
[2] Yangzhou Univ, Coll Anim Sci & Technol, Yangzhou 225509, Peoples R China
[3] Virginia Polytech Inst & State Univ, Dept Anim & Poultry Sci, Blacksburg, VA 24061 USA
基金
中国国家自然科学基金;
关键词
microRNAs; cattle; chickens; pigs; sheep; GENOME-WIDE ASSOCIATION; ADIPOSE-TISSUE; POSTTRANSCRIPTIONAL REGULATION; MUSCLE DEVELOPMENT; COMMON VARIANTS; CHICKEN-EMBRYO; EXPRESSION; IDENTIFICATION; GENE; SKELETAL;
D O I
10.1017/S1751731113001183
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
MicroRNAs (miRNAs) are a class of similar to 22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
引用
收藏
页码:1567 / 1575
页数:9
相关论文
共 98 条
[1]  
Abd El Naby WS, 2011, ZYGOTE, P1
[2]   Sexually Dimorphic MicroRNA Expression During Chicken Embryonic Gonadal Development [J].
Bannister, Stephanie C. ;
Tizard, Mark L. V. ;
Doran, Timothy J. ;
Sinclair, Andrew H. ;
Smith, Craig A. .
BIOLOGY OF REPRODUCTION, 2009, 81 (01) :165-176
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin [J].
Berry, C ;
Thomas, M ;
Langley, B ;
Sharma, M ;
Kambadur, R .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (01) :C135-C141
[5]   Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression [J].
Bueno, Maria J. ;
Perez de Castro, Ignacio ;
de Cedron, Marta Gomez ;
Santos, Javier ;
Calin, George A. ;
Cigudosa, Juan C. ;
Croce, Carlo M. ;
Fernandez-Piqueras, Jose ;
Malumbres, Marcos .
CANCER CELL, 2008, 13 (06) :496-506
[6]   Emerging roles of chicken and viral microRNAs in avian disease [J].
Joan Burnside ;
Robin Morgan .
BMC Proceedings, 5 (Suppl 4)
[7]   Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing [J].
Caiment, Florian ;
Charlier, Carole ;
Hadfield, Tracy ;
Cockett, Noelle ;
Georges, Michel ;
Baurain, Denis .
GENOME RESEARCH, 2010, 20 (12) :1651-1662
[8]   Solexa Sequencing Identification of Conserved and Novel microRNAs in Backfat of Large White and Chinese Meishan Pigs [J].
Chen, Chen ;
Deng, Bing ;
Qiao, Mu ;
Zheng, Rong ;
Chai, Jin ;
Ding, Yi ;
Peng, Jian ;
Jiang, Siwen .
PLOS ONE, 2012, 7 (02)
[9]   OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: Novel mechanisms for cardiovascular diseases [J].
Chen, Ku-Chung ;
Liao, Yi-Chu ;
Hsieh, I-Chung ;
Wang, Yung-Song ;
Hu, Ching-Yu ;
Juo, Suh-Hang Flank .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2012, 52 (03) :587-595
[10]  
Cirera S, 2010, COMPARATIVE MED, V60, P136