A nonexistence result for a nonlinear wave equation with damping on a Riemannian manifold

被引:3
作者
Ru, Qiang [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
nonexistence; wave equation; CRITICAL EXPONENT; THEOREMS;
D O I
10.1186/s13661-016-0705-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global nonexistence of solutions to a nonlinear wave equation with critical potential V(x) on a Riemannian manifold, the form of which is more general than those in (Todorova and Yordanov in C.R. Acad. Sci., Ser. 1 Math. 300: 557-562, 2000). The way we follow is motivated by the work of Qi S. Zhang (C.R. Acad. Sci., Ser. 1 Math. 333: 109-114, 2001). We also prove the local existence and uniqueness result.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
DETURCK DM, 1981, ANN SCI ECOLE NORM S, V14, P249
[2]   Hyperbolic mean curvature flow [J].
He, Chun-Lei ;
Kong, De-Xing ;
Liu, Kefeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :373-390
[3]  
Hormander Lars, 1997, Mathematiques & Applications (Berlin) Mathematics & Applications, V26
[4]  
Kong D-X, 2007, J MATH PHYS, V48, P1
[5]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288
[6]   Critical exponent for semilinear wave equation with critical potential [J].
Li, Xinfu .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :1379-1391
[7]   CRITICAL EXPONENT FOR THE SEMILINEAR WAVE EQUATION WITH TIME-DEPENDENT DAMPING [J].
Lin, Jiayun ;
Nishihara, Kenji ;
Zhai, Jian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (12) :4307-4320
[8]   Critical exponent for a nonlinear wave equation with damping [J].
Todorova, G ;
Yordanov, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07) :557-562
[9]  
Wakasugi Y, 2014, TRENDS MATH, P375
[10]   A new critical phenomenon for semilinear parabolic problems [J].
Zhang, QS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 219 (01) :125-139