Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position

被引:78
作者
Felder, E [1 ]
Franzini-Armstrong, C [1 ]
机构
[1] Univ Penn, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
关键词
D O I
10.1073/pnas.032657599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A key event in skeletal muscle activation is the rapid release of Ca2+ from the sarcoplasmic reticulum (SR), the Ca2+ storage organelle in the muscle cell. The surface membrane/transverse tubules and the SR form functional units (calcium release units containing one or two couplons or junctions), where the voltage-sensing dihydropyridine receptor of the surface membrane interacts with the SR Ca2+ release channel [ryanodine receptor (RyR)] and depolarization of the cell membrane is converted into Ca2+ release from the SR. Although RyR1 is the most important isoform in skeletal muscle, some muscles also express high levels of RyR3, an isoform with a wide tissue distribution. The cytoplasmic domains of RyRs are visible in the electron microscope as periodically disposed feet. We find that, in muscles containing only RyR1, feet are exclusively located over the junctional SR surface facing the surface membrane/transverse tubule. In muscles containing RyR1 as well as RyR3, additional feet are located in lateral parajunctional regions immediately adjacent to junctional SR. Biochemical content of RyR3 and content of parajunctional feet are highly correlated in different muscles and the disposition of parajunctional versus junctional feet are notably different. On the basis of these two observations, we postulate that RyR3s are restricted to the parajunctional region, and thus their activation must be indirect and derivative during excitation- contraction coupling.
引用
收藏
页码:1695 / 1700
页数:6
相关论文
共 37 条