Mechanically strong hybrid double network hydrogels with antifouling properties

被引:80
作者
Chen, Hong [1 ]
Chen, Qiang [2 ]
Hu, Rundong [1 ]
Wang, Hua [1 ]
Newby, Bi-min Zhang [1 ]
Chang, Yung [3 ,4 ]
Zheng, Jie [1 ]
机构
[1] Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA
[2] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454003, Peoples R China
[3] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Chungli 320, Taiwan
[4] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan 320, Taiwan
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
COVALENT ENTANGLEMENT HYDROGELS; GELLAN GUM; CARTILAGE; SURFACE; STRENGTH; TOUGH; CARRAGEENAN; COATINGS; FRACTURE; RELEASE;
D O I
10.1039/c5tb00681c
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The development of mechanically tough and biocompatible polymer hydrogels has great potential and promise for many applications. Herein, we synthesized a new type of hybrid physically-chemically crosslinked Agar/PAM double network (DN) hydrogel using a simple, one-pot method. Agar/PAM gels are designed with desirable/balanced mechanical properties by varying the network-forming parameters. Among them, a strong Agar/PAM DN gel achieves the highest tensile stress of 3.3 MPa at failure strain of 2400%, while a tough DN gel achieves the tensile strain of 3700% at failure stress of 2.8 MPa. Besides excellent mechanical properties, Agar/PAM DN hydrogels exhibited excellent antifouling properties to highly resist protein adsorption, cell adhesion, and bacterial attachment, as well as the free shapeable property to form any complex shapes. The relationship between mechanical properties and antifouling performance was discussed. We hope that the combination of the mechanical and antifouling properties in Agar/PAM gels will make them as promising "biomimetic'' materials for many bio-inert applications.
引用
收藏
页码:5426 / 5435
页数:10
相关论文
共 63 条
  • [1] Sustained loading increases the compressive strength of articular cartilage
    Adams, MA
    Kerin, AJ
    Wisnom, MR
    [J]. CONNECTIVE TISSUE RESEARCH, 1998, 39 (04) : 245 - 256
  • [2] Brittle-ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor
    Ahmed, Saika
    Nakajima, Tasuku
    Kurokawa, Takayuki
    Haque, Md Anamul
    Gong, Jian Ping
    [J]. POLYMER, 2014, 55 (03) : 914 - 923
  • [3] Biological responses to materials
    Anderson, JM
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2001, 31 : 81 - 110
  • [4] Three-Dimensional Printing Fiber Reinforced Hydrogel Composites
    Bakarich, Shannon E.
    Gorkin, Robert, III
    Panhuis, Marc In Het
    Spinks, Geoffrey M.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) : 15998 - 16006
  • [5] Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine
    Bakarich, Shannon E.
    Balding, Paul
    Gorkin, Robert, III
    Spinks, Geoffrey M.
    Panhuis, Marc In Het
    [J]. RSC ADVANCES, 2014, 4 (72): : 38088 - 38092
  • [6] Extrusion printing of ionic-covalent entanglement hydrogels with high toughness
    Bakarich, Shannon E.
    Panhuis, Marc In Het
    Beirne, Stephen
    Wallace, Gordon G.
    Spinks, Geoffrey M.
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (38) : 4939 - 4946
  • [7] Biopolymer-Based Hydrogels for Cartilage Tissue Engineering
    Balakrishnan, Biji
    Banerjee, R.
    [J]. CHEMICAL REVIEWS, 2011, 111 (08) : 4453 - 4474
  • [8] Baltch A. L., 1994, INFECT DIS THERAPY S
  • [9] Borkenhagen M, 1998, J BIOMED MATER RES, V40, P392, DOI 10.1002/(SICI)1097-4636(19980603)40:3<392::AID-JBM8>3.3.CO
  • [10] 2-4