The Erdos-Hajnal conjecture for bull-free graphs

被引:33
作者
Chudnovsky, Maria [1 ]
Safra, Shmuel [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
关键词
Bull-free graphs; Induced subgraphs; Stable set; Clique;
D O I
10.1016/j.jctb.2008.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bull is a graph consisting, of a triangle and two pendant edges. A graphs is called bull-free if no induced subgraph of it is a bull. In this paper we prove that every bull-free graph on n vertices contains either a clique or a stable set of size n(1/4), thus settling the Erdos-Hajnal conjecture [P. Erdos, A. Hajnal, Ramsey-type theorems. Discrete Appl. Math. 25 (1989) 37-52] for the bull. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 7 条
  • [1] Ramsey-type theorems with forbidden subgraphs
    Alon, N
    Pach, J
    Solymosi, J
    [J]. COMBINATORICA, 2001, 21 (02) : 155 - 170
  • [2] CHUDNOVSKY M, STRUCTURE BULL UNPUB
  • [3] The strong perfect graph theorem
    Chudnovsky, Maria
    Robertson, Neil
    Seymour, Paul
    Thomas, Robin
    [J]. ANNALS OF MATHEMATICS, 2006, 164 (01) : 51 - 229
  • [4] Cook W., 1998, Combinatorial Optimization
  • [5] RAMSEY-TYPE THEOREMS
    ERDOS, P
    HAJNAL, A
    [J]. DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) : 37 - 52
  • [6] Gyarfas A., 1997, ALGORITHMS COMB, V14, P93
  • [7] Lovasz L., 1972, DISCRETE MATH, V2, P253, DOI DOI 10.1016/0012-365X(72)90006-4