The Erdos-Hajnal conjecture for bull-free graphs

被引:34
作者
Chudnovsky, Maria [1 ]
Safra, Shmuel [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
关键词
Bull-free graphs; Induced subgraphs; Stable set; Clique;
D O I
10.1016/j.jctb.2008.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bull is a graph consisting, of a triangle and two pendant edges. A graphs is called bull-free if no induced subgraph of it is a bull. In this paper we prove that every bull-free graph on n vertices contains either a clique or a stable set of size n(1/4), thus settling the Erdos-Hajnal conjecture [P. Erdos, A. Hajnal, Ramsey-type theorems. Discrete Appl. Math. 25 (1989) 37-52] for the bull. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 7 条
[1]   Ramsey-type theorems with forbidden subgraphs [J].
Alon, N ;
Pach, J ;
Solymosi, J .
COMBINATORICA, 2001, 21 (02) :155-170
[2]  
CHUDNOVSKY M, STRUCTURE BULL UNPUB
[3]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229
[4]  
Cook W., 1998, Combinatorial Optimization
[5]   RAMSEY-TYPE THEOREMS [J].
ERDOS, P ;
HAJNAL, A .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) :37-52
[6]  
Gyarfas A., 1997, ALGORITHMS COMB, V14, P93
[7]  
Lovasz L., 1972, DISCRETE MATH, V2, P253, DOI DOI 10.1016/0012-365X(72)90006-4