Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system

被引:60
作者
Fang, Yu [1 ,2 ]
Wang, Jianli [1 ,3 ]
Ma, Wenjian [1 ,2 ]
Yang, Jun [1 ,2 ]
Zhang, Hailing [4 ]
Zhao, Lei [1 ,2 ]
Chen, Shanshan [1 ,3 ]
Zhang, Shuyan [1 ,2 ]
Hu, Xiaoqing [1 ,3 ]
Li, Ye [1 ,3 ]
Wang, Xiaoyuan [1 ,2 ,3 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, 1800 Lihu Ave, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Int Joint Lab Food Safety, Wuxi 214122, Jiangsu, Peoples R China
[4] Yantai Univ, Coll Life Sci, Dept Biol Engn, Yantai 264005, Shandong, Peoples R China
关键词
Thermal switch system; Carbon distribution; L-threonine maximization; Dynamic regulation; Escherichia coli; ESCHERICHIA-COLI; GENE-EXPRESSION; DYNAMIC CONTROL; AMINO-ACIDS; PATHWAY; DESIGN; GENOME; METABOLOME; CHEMICALS; PROTEINS;
D O I
10.1016/j.ymben.2020.01.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In metabolic engineering, unbalanced microbial carbon distribution has long blocked the further improvement in yield and productivity of high-volume natural metabolites. Current studies mostly focus on regulating desired biosynthetic pathways, whereas few strategies are available to maximize L-threonine efficiently. Here, we present a strategy to guarantee the supply of reduced cofactors and actualize L-threonine maximization by regulating cellular carbon distribution in central metabolic pathways. A thermal switch system was designed and applied to divide the whole fermentation process into two stages: growth and production. This system could rebalance carbon substrates between pyruvate and oxaloacetate by controlling the heterogenous expression of pyruvate carboxylase and oxaloacetate decarboxylation that responds to temperature. The system was tested in an L-threonine producer Escherichia coli TWF001, and the resulting strain TWF106/pFT24rp overproduced L-threonine from glucose with 111.78% molar yield. The thermal switch system was then employed to switch off the L-alanine synthesis pathway, resulting in the highest L-threonine yield of 124.03%, which exceeds the best reported yield (87.88%) and the maximum available theoretical value of L-threonine production (122.47%). This inducer-free genetic circuit design can be also developed for other biosynthetic pathways to increase product conversion rates and shorten production cycles.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 58 条
[1]   Dynamic metabolic engineering for increasing bioprocess productivity [J].
Anesiadis, Nikolaos ;
Cluett, William R. ;
Mahadevan, Radhakrishnan .
METABOLIC ENGINEERING, 2008, 10 (05) :255-266
[2]   TEMPERATURE PERTURBATION OF AQUEOUS BUFFERED OXALOACETATE SOLUTIONS [J].
ANNETT, RG ;
KOSICKI, GW .
CANADIAN JOURNAL OF BIOCHEMISTRY, 1969, 47 (11) :1007-&
[3]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[4]   In vivo and in vitro protein solubility assays using split GFP [J].
Cabantous, Stephanie ;
Waldo, Geoffrey S. .
NATURE METHODS, 2006, 3 (10) :845-854
[5]   NEW SHUTTLE VECTORS FOR HAEMOPHILUS-INFLUENZAE AND ESCHERICHIA-COLI - P15A-DERIVED PLASMIDS REPLICATE IN HAEMOPHILUS-INFLUENZAE RD [J].
CHANDLER, MS .
PLASMID, 1991, 25 (03) :221-224
[6]   CONSTRUCTION AND CHARACTERIZATION OF A NOVEL CROSS-REGULATION SYSTEM FOR REGULATING CLONED GENE-EXPRESSION IN ESCHERICHIA-COLI [J].
CHEN, W ;
KALLIO, PT ;
BAILEY, JE .
GENE, 1993, 130 (01) :15-22
[7]   Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production [J].
Chen, Xiulai ;
Wang, Yuancai ;
Dong, Xiaoxiang ;
Hu, Guipeng ;
Liu, Liming .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (10) :4041-4052
[8]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[9]   Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis [J].
Deng, Jieying ;
Chen, Chunmei ;
Gu, Yang ;
Lv, Xueqin ;
Liu, Yanfeng ;
Li, Jianghua ;
Ledesma-Amaro, Rodrigo ;
Du, Guocheng ;
Liu, Long .
METABOLIC ENGINEERING, 2019, 55 :179-190
[10]   The Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System: Regulation by Protein Phosphorylation and Phosphorylation-Dependent Protein-Protein Interactions [J].
Deutscher, Josef ;
Ake, Francine Moussan Desiree ;
Derkaoui, Meriem ;
Zebre, Arthur Constant ;
Thanh Nguyen Cao ;
Bouraoui, Houda ;
Kentache, Takfarinas ;
Mokhtari, Abdelhamid ;
Milohanic, Eliane ;
Joyet, Philippe .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2014, 78 (02) :231-256