CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM

被引:125
作者
Prohl, Andreas [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 06期
关键词
Magneto-hydrodynamics; discretization; FEM; fixed-point scheme; splitting-method;
D O I
10.1051/m2an:2008034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressible MHD equations couple Navier-Stokes equations with Maxwell's equations to describe the flow of a viscous, incompressible, and electrically conducting fluid in a Lipschitz domain Omega subset of R-3. We verify convergence of iterates of different coupling and decoupling fully discrete schemes towards weak solutions for vanishing discretization parameters. Optimal first order of convergence is shown in the presence of strong solutions for a splitting scheme which decouples the computation of velocity field, pressure, and magnetic fields at every iteration step.
引用
收藏
页码:1065 / 1087
页数:23
相关论文
共 30 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1979, ANN MAT PUR APPL
[4]   Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations [J].
Armero, F ;
Simo, JC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 131 (1-2) :41-90
[5]  
BANAS L, CONVERGENT FIN UNPUB
[6]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[7]  
Brenner S. C., 2007, Texts Appl. Math., V15
[8]  
Cattabriga L., 1961, Rend. Semin. Mat. Univ. Padova, V31, P308
[9]   Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients [J].
Chen, ZM ;
Du, Q ;
Zou, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) :1542-1570
[10]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&