On the geometry of toric arrangements

被引:51
作者
De Concini, C [1 ]
Procesi, C [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00100 Rome, Italy
关键词
D O I
10.1007/s00031-005-0403-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the counting formulas of integral polytopes, as in Brion and Vergne [5], [4], and Szenes and Vergne [27], we start to form the foundations of a theory for toric arrangements, which may be considered as the periodic version of the theory of hyperplane arrangements.
引用
收藏
页码:387 / 422
页数:36
相关论文
共 28 条
[1]   Counting integer flows in networks [J].
Baldoni-Silva, W ;
De Loera, JA ;
Vergne, M .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2004, 4 (03) :277-314
[2]  
BALDONISILVA W, MATHCO0103097
[3]   Interpolated denumerants and Lambert series [J].
Bell, ET .
AMERICAN JOURNAL OF MATHEMATICS, 1943, 65 :382-386
[4]   Residue formulae, vector partition functions and lattice points in rational polytopes [J].
Brion, M ;
Vergne, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (04) :797-833
[5]   Arrangement of hyperplanes. I: Rational functions and Jeffrey-Kirwan residue [J].
Brion, M ;
Vergne, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (05) :715-741
[6]  
Coutinho S.C., 1995, LONDON MATH SOC STUD, V33
[7]  
DAHMEN W, 1988, T AM MATH SOC, V308, P509
[8]  
De Concini C, 2005, PROG MATH, V235, P139
[9]  
DECONCINI C, MATHCO0412130
[10]  
DECONCINI G, 1995, Selecta Math. (N.S.), V1, P459, DOI 10.1007/BF01589496