Integrating L∞-algebras

被引:79
作者
Henriques, Andre [1 ]
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
L(infinity)-algebra; simplicial manifold; string group; Lie; 2-group; 2-algebra; Kan condition;
D O I
10.1112/S0010437X07003405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Lie n-algebra, we provide an explicit construction of its integrating Lie n-group. This extends work done by Getzler in the case of nilpotent L(infinity)-algebras. When applied to an ordinary Lie algebra, our construction yields the simplicial classifying space of the corresponding simply connected Lie group. In the case of the string Lie 2-algebra of Baez and Crans, we obtain the simplicial nerve of their model of the string group.
引用
收藏
页码:1017 / 1045
页数:29
相关论文
共 19 条
  • [1] Baez J.C., 2004, THEORY APPL CATEG, V12, P423
  • [2] Baez JC., 2004, THEORY APPL CATEG, V12, P492
  • [3] From loop groups to 2-groups
    Baez, John C.
    Stevenson, Danny
    Crans, Alissa S.
    Schreiber, Urs
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 101 - 135
  • [4] Higher Cech theory
    Beke, T
    [J]. K-THEORY, 2004, 32 (04): : 293 - 322
  • [5] The geometry of degree-4 characteristic classes and of line bundles on loop spaces .2.
    Brylinski, JL
    McLaughlin, DA
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) : 105 - 139
  • [6] THE GEOMETRY OF DEGREE-4 CHARACTERISTIC CLASSES AND OF LINE BUNDLES ON LOOP-SPACES .1.
    BRYLINSKI, JL
    MCLAUGHLIN, DA
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 75 (03) : 603 - 638
  • [7] Integrability of Lie brackets
    Crainic, M
    Fernandes, RL
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 575 - 620
  • [8] DUSKIN J, 1979, LECT NOTES MATH, V753, P255
  • [9] GLENN PG, 1982, J PURE APPL ALGEBRA, V25, P33, DOI 10.1016/0022-4049(82)90094-9
  • [10] Hinich V, 1997, INT MATH RES NOTICES, V1997, P223