A novel finite element method for the distributed-order time fractional Cable equation in two dimensions

被引:24
作者
Gao, Xinghua [1 ]
Liu, Fawang [2 ,3 ,4 ]
Li, Hong [1 ]
Liu, Yang [1 ]
Turner, Ian [2 ,5 ]
Yin, Baoli [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[5] Queensland Univ Technol QUT, Australian Res Council Ctr Excellence Math & Stat, Brisbane, Qld, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Galerkin finite element method; Irregular convex domains; Distributed-order time fractional Cable equation; Composite Trapezoid formula; DIFFUSION-WAVE EQUATION; SPECTRAL METHOD; DIFFERENCE APPROXIMATIONS; NUMERICAL-METHODS; VOLUME METHOD; SCHEME;
D O I
10.1016/j.camwa.2020.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the unstructured mesh Galerkin finite element method with a weighted and shifted Grunwald difference approximation and Composite Trapezoid formula is presented to solve the nonhomogeneous two-dimensional distributed order time fractional Cable equation on irregular convex domains. The Crank-Nicolson type discretization of the finite element scheme is implemented to obtain the numerical solution. The stability and convergence of the numerical scheme are discussed and derived. Finally, some numerical examples on irregular convex domains are given to confirm our theoretical results. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
[41]   Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation [J].
Li, Limei ;
Xu, Da ;
Luo, Man .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 :471-485
[42]   β-robust virtual element method for distributed order time-fractional reaction-diffusion equation with variable coefficients [J].
Chen, Yanping ;
Lei, Jian ;
Gu, Qiling ;
Zhou, Jianwei ;
Qin, Fangfang .
NUMERICAL ALGORITHMS, 2025,
[43]   A fast-high order compact difference method for the fractional cable equation [J].
Liu, Zhengguang ;
Cheng, Aijie ;
Li, Xiaoli .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (06) :2237-2266
[44]   Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation [J].
Li, Limei ;
Xu, Da .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (01) :41-57
[45]   An α-Robust Galerkin Spectral Method for the Nonlinear Distributed-Order Time-Fractional Diffusion Equations with Initial Singularity [J].
Liu, Haiyu ;
Lu, Shujuan .
FRACTAL AND FRACTIONAL, 2024, 8 (03)
[46]   On the time-fractional Cattaneo equation of distributed order [J].
Awad, Emad .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 518 :210-233
[47]   A Galerkin Finite Element Method for a Class of Time-Space Fractional Differential Equation with Nonsmooth Data [J].
Zhao, Zhengang ;
Zheng, Yunying ;
Guo, Peng .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) :386-406
[48]   High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation [J].
Ren, Jincheng ;
Shi, Dongyang ;
Vong, Seakweng .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (02) :284-301
[49]   A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile immobile advection-diffusion equations [J].
Chen, Chuanjun ;
Liu, Huan ;
Zheng, Xiangcheng ;
Wang, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) :2771-2783
[50]   A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions [J].
Wang, Ying ;
Liu, Fawang ;
Mei, Liquan ;
Anh, Vo V. .
NUMERICAL ALGORITHMS, 2021, 86 (04) :1443-1474