A novel finite element method for the distributed-order time fractional Cable equation in two dimensions

被引:22
作者
Gao, Xinghua [1 ]
Liu, Fawang [2 ,3 ,4 ]
Li, Hong [1 ]
Liu, Yang [1 ]
Turner, Ian [2 ,5 ]
Yin, Baoli [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[5] Queensland Univ Technol QUT, Australian Res Council Ctr Excellence Math & Stat, Brisbane, Qld, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Galerkin finite element method; Irregular convex domains; Distributed-order time fractional Cable equation; Composite Trapezoid formula; DIFFUSION-WAVE EQUATION; SPECTRAL METHOD; DIFFERENCE APPROXIMATIONS; NUMERICAL-METHODS; VOLUME METHOD; SCHEME;
D O I
10.1016/j.camwa.2020.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the unstructured mesh Galerkin finite element method with a weighted and shifted Grunwald difference approximation and Composite Trapezoid formula is presented to solve the nonhomogeneous two-dimensional distributed order time fractional Cable equation on irregular convex domains. The Crank-Nicolson type discretization of the finite element scheme is implemented to obtain the numerical solution. The stability and convergence of the numerical scheme are discussed and derived. Finally, some numerical examples on irregular convex domains are given to confirm our theoretical results. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
  • [21] Some second-order 𝜃 schemes combined with finite element method for nonlinear fractional cable equation
    Yang Liu
    Yanwei Du
    Hong Li
    Fawang Liu
    Yajun Wang
    Numerical Algorithms, 2019, 80 : 533 - 555
  • [22] FINITE ELEMENT METHOD FOR TIME-SPACE-FRACTIONAL SCHRODINGER EQUATION
    Zhu, Xiaogang
    Yuan, Zhanbin
    Wang, Jungang
    Nie, Yufeng
    Yang, Zongze
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [23] A Legendre collocation method for distributed-order fractional optimal control problems
    Zaky, Mahmoud A.
    NONLINEAR DYNAMICS, 2018, 91 (04) : 2667 - 2681
  • [24] Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
    Ye, H.
    Liu, F.
    Anh, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 652 - 660
  • [25] A numerical approach for solving Caputo-Prabhakar distributed-order time-fractional partial differential equation
    Khasteh, Mohsen
    Sheikhani, Amir Hosein Refahi
    Shariffar, Farhad
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2024, 12 (03): : 571 - 584
  • [26] An Implicit Numerical Method for the Riemann-Liouville Distributed-Order Space Fractional Diffusion Equation
    Zhang, Mengchen
    Shen, Ming
    Chen, Hui
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [27] Finite Difference and Chebyshev Collocation for Time-Fractional and Riesz Space Distributed-Order Advection-Diffusion Equation with Time-Delay
    Wang, Fang
    Chen, Yuxue
    Liu, Yuting
    FRACTAL AND FRACTIONAL, 2024, 8 (12)
  • [28] TT-M FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation
    Gao, Xinghua
    Yin, Baoli
    Li, Hong
    Liu, Yang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 181 (181) : 117 - 137
  • [29] Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation
    Zhao, Yue
    Bu, Weiping
    Zhao, Xuan
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 117 - 135
  • [30] A numerical method for finding solution of the distributed-order time-fractional forced Korteweg-de Vries equation including the Caputo fractional derivative
    Derakhshan, Mohammad Hossein
    Aminataei, Azim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (05) : 3144 - 3165