A novel finite element method for the distributed-order time fractional Cable equation in two dimensions

被引:23
作者
Gao, Xinghua [1 ]
Liu, Fawang [2 ,3 ,4 ]
Li, Hong [1 ]
Liu, Yang [1 ]
Turner, Ian [2 ,5 ]
Yin, Baoli [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
[5] Queensland Univ Technol QUT, Australian Res Council Ctr Excellence Math & Stat, Brisbane, Qld, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Galerkin finite element method; Irregular convex domains; Distributed-order time fractional Cable equation; Composite Trapezoid formula; DIFFUSION-WAVE EQUATION; SPECTRAL METHOD; DIFFERENCE APPROXIMATIONS; NUMERICAL-METHODS; VOLUME METHOD; SCHEME;
D O I
10.1016/j.camwa.2020.04.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the unstructured mesh Galerkin finite element method with a weighted and shifted Grunwald difference approximation and Composite Trapezoid formula is presented to solve the nonhomogeneous two-dimensional distributed order time fractional Cable equation on irregular convex domains. The Crank-Nicolson type discretization of the finite element scheme is implemented to obtain the numerical solution. The stability and convergence of the numerical scheme are discussed and derived. Finally, some numerical examples on irregular convex domains are given to confirm our theoretical results. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:923 / 939
页数:17
相关论文
共 50 条
  • [1] An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions
    Qiu, Wenlin
    Xu, Da
    Chen, Haifan
    Guo, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 3156 - 3172
  • [2] A Radial Basis Function-Hermite Finite Difference Method for the Two-Dimensional Distributed-Order Time-Fractional Cable Equation
    Haghi, Majid
    Ilati, Mohammad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6573 - 6585
  • [3] Utilizing differential quadrature-based RBF partition of unity collocation method to simulate distributed-order time fractional Cable equation
    Biranvand, Nader
    Ebrahimijahan, Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01)
  • [4] A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Zhang, Yaping
    Cao, Jiliang
    Bu, Weiping
    Xiao, Aiguo
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (02)
  • [5] A Galerkin finite element method for the modified distributed-order anomalous sub-diffusion equation
    Li, Lang
    Liu, Fawang
    Feng, Libo
    Turner, Ian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [6] Utilizing differential quadrature-based RBF partition of unity collocation method to simulate distributed-order time fractional Cable equation
    Nader Biranvand
    Ali Ebrahimijahan
    Computational and Applied Mathematics, 2024, 43
  • [7] A novel finite volume method for the Riesz space distributed-order diffusion equation
    Li, J.
    Liu, F.
    Feng, L.
    Turner, I.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 772 - 783
  • [8] High-Order Numerical Method for Solving a Space Distributed-Order Time-Fractional Diffusion Equation
    Li, Jing
    Yang, Yingying
    Jiang, Yingjun
    Feng, Libo
    Guo, Boling
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 801 - 826
  • [9] A NUMERICAL METHOD FOR TWO-DIMENSIONAL DISTRIBUTED-ORDER FRACTIONAL NONLINEAR SOBOLEV EQUATION
    Zhagharian, Sh.
    Heydari, M. H.
    Razzaghi, M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2630 - 2645
  • [10] A numerical method for distributed-order time fractional 2D Sobolev equation
    Heydari, M. H.
    Rashid, S.
    Jarad, F.
    RESULTS IN PHYSICS, 2023, 45