Critical slowing down in random anisotropy magnets

被引:0
作者
Dudka, M [1 ]
Folk, R
Holovatch, Y
Moser, G
机构
[1] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-76011 Lvov, Ukraine
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
[3] Ivan Franko Natl Univ Lviv, UA-79005 Lvov, Ukraine
[4] Salzburg Univ, Inst Phys & Biophys, A-5020 Salzburg, Austria
关键词
critical dynamics; disordered systems; random anisotropy; renormalization group;
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides with that of random site Ising systems. Therefore the asymptotic critical dynamics is governed by the dynamical exponent of the random Ising model. However, the disorder effects considerably the dynamical behaviour in the non-asymptotic regime. We perform a field-theoretical renormalization group analysis within the minimal subtraction scheme in two-loop approximation to investigate asymptotic and effective critical dynamics of random anisotropy systems. The results demonstrate the non-monotonic behaviour of the dynamical effective critical exponent z(eff).
引用
收藏
页码:737 / 748
页数:12
相关论文
共 54 条
[41]   CRITICAL-BEHAVIOR OF RANDOM-SYSTEMS [J].
MUKAMEL, D ;
GRINSTEIN, G .
PHYSICAL REVIEW B, 1982, 25 (01) :381-388
[42]   Magnetic properties in granular Co10Cu90 alloys:: the effect of random anisotropy and interparticle interactions [J].
Nunes, WC ;
Novak, MA ;
Knobel, M ;
Hernando, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART II) :1856-1858
[43]  
PATASHINSKII AZ, 1966, SOV PHYS JETP-USSR, V23, P292
[44]   SPIN-GLASS AND FERROMAGNETIC BEHAVIOR INDUCED BY RANDOM UNIAXIAL ANISOTROPY [J].
PELCOVITS, RA ;
PYTTE, E ;
RUDNICK, J .
PHYSICAL REVIEW LETTERS, 1978, 40 (07) :476-479
[45]   Critical phenomena and renormalization-group theory [J].
Pelissetto, A ;
Vicari, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 368 (06) :549-727
[46]   Quenched disorder and the critical behavior of a partially frustrated system [J].
Perumal, A ;
Srinivas, V ;
Rao, VV ;
Dunlap, RA .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)
[47]   MINIMAL RENORMALIZATION WITHOUT EPSILON-EXPANSION - CRITICAL-BEHAVIOR IN 3 DIMENSIONS [J].
SCHLOMS, R ;
DOHM, V .
NUCLEAR PHYSICS B, 1989, 328 (03) :639-663
[48]   RENORMALIZATION-GROUP FUNCTIONS AND NONUNIVERSAL CRITICAL-BEHAVIOR [J].
SCHLOMS, R ;
DOHM, V .
EUROPHYSICS LETTERS, 1987, 3 (04) :413-418
[49]   Comments on the influence of disorder for pinning model in correlated Gaussian environment [J].
Berger, Quentin .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02) :953-977
[50]   EQUATION OF STATE IN NEIGHBORHOOD OF CRITICAL POINT [J].
WIDOM, B .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (11) :3898-&