Critical slowing down in random anisotropy magnets

被引:0
作者
Dudka, M [1 ]
Folk, R
Holovatch, Y
Moser, G
机构
[1] Natl Acad Sci Ukraine, Inst Condensed Matter Phys, UA-76011 Lvov, Ukraine
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
[3] Ivan Franko Natl Univ Lviv, UA-79005 Lvov, Ukraine
[4] Salzburg Univ, Inst Phys & Biophys, A-5020 Salzburg, Austria
关键词
critical dynamics; disordered systems; random anisotropy; renormalization group;
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides with that of random site Ising systems. Therefore the asymptotic critical dynamics is governed by the dynamical exponent of the random Ising model. However, the disorder effects considerably the dynamical behaviour in the non-asymptotic regime. We perform a field-theoretical renormalization group analysis within the minimal subtraction scheme in two-loop approximation to investigate asymptotic and effective critical dynamics of random anisotropy systems. The results demonstrate the non-monotonic behaviour of the dynamical effective critical exponent z(eff).
引用
收藏
页码:737 / 748
页数:12
相关论文
共 54 条
[1]  
AHARONY A, 1975, PHYS REV B, V12, P1038, DOI 10.1103/PhysRevB.12.1038
[2]  
[Anonymous], 1966, Physics Physique Fizika, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.2.263
[3]   CRITICAL INDEXES FROM PERTURBATION ANALYSIS OF CALLAN-SYMANZIK EQUATION [J].
BAKER, GA ;
NICKEL, BG ;
MEIRON, DI .
PHYSICAL REVIEW B, 1978, 17 (03) :1365-1374
[4]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[5]   THE RANDOM FIELD ISING-MODEL [J].
BELANGER, DP ;
YOUNG, AP .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 100 (1-3) :272-291
[6]   Random Ising model in three dimensions: theory, experiment and simulation - a difficult coexistence [J].
Berche, B ;
Berche, PE ;
Chatelain, C ;
Janke, W .
CONDENSED MATTER PHYSICS, 2005, 8 (01) :47-58
[7]   Bond dilution in the 3D ising model: a Monte Carlo study [J].
Berche, PE ;
Chatelain, C ;
Berche, B ;
Janke, W .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (03) :463-474
[8]   Critical dynamics and effective exponents of magnets with extended impurities [J].
Blavats'ka, V ;
Dudka, M ;
Folk, R ;
Holovatch, Y .
PHYSICAL REVIEW B, 2005, 72 (06)
[9]  
BOYANOVSKY D, 1983, PHYS REV B, V27, P6971, DOI 10.1103/PhysRevB.27.6971.2
[10]   CRITICAL-BEHAVIOR OF M-COMPONENT MAGNETS WITH CORRELATED IMPURITIES [J].
BOYANOVSKY, D ;
CARDY, JL .
PHYSICAL REVIEW B, 1982, 26 (01) :154-170