A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production

被引:88
作者
Hou, Mengyan [1 ,2 ]
Chen, Long [1 ,2 ]
Guo, Zhaowei [1 ,2 ]
Dong, Xiaoli [1 ,2 ]
Wang, Yonggang [1 ,2 ]
Xia, Yongyao [1 ,2 ]
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
SODIUM-ION BATTERIES; OXYGEN DEPOLARIZED CATHODES; POSITIVE ELECTRODE MATERIAL; CHLORINE-PRODUCTION; CELL; EVOLUTION; HYDROGEN; BRINE; PERFORMANCE; NA0.44MNO2;
D O I
10.1038/s41467-018-02877-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Existing chlor-alkali processes generally use asbestos, mercury or fluorine-containing ion-exchange membranes to separate the simultaneous chlorine production on the anode and hydrogen production on the cathode, and form sodium hydroxide in the electrolyte. Here, using the Na+ de-intercalation/intercalation of a Na0.44MnO2 electrode as a redox mediator, we decouple the chlor-alkali process into two independent steps: a H-2 production step with the NaOH formation in the electrolyte and a Cl-2 production step. The first step involves a cathodic H-2 evolution reaction (H2O -> H-2) and an anodic Na+ de-intercalation reaction (Na0.44MnO2 -> Na0.44-xMnO2), during which NaOH is produced in the electrolyte solution. The second step depends on a cathodic Na+ intercalation reaction (Na0.44-xMnO2 -> Na0.44MnO2) and an anodic Cl-2 production (Cl -> Cl-2). The cycle of the two steps provides a membrane-free process, which is potentially a promising direction for developing clean chloralkali technology.
引用
收藏
页数:8
相关论文
共 47 条
  • [1] Abdel-Aal H K, 2010, OPEN FUEL CELL J, V3, P1
  • [2] Use of the Dead Sea brine as electrolyte for electrochemical generation of active chlorine
    Al-Hamaiedeh, Husam D.
    [J]. DESALINATION AND WATER TREATMENT, 2013, 51 (16-18) : 3521 - 3526
  • [3] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [4] Nature identification and morphology characterization of cation-exchange membrane fouling during conventional electrodialysis
    Ayala-Bribiesca, Erik
    Pourcelly, Gerald
    Bazinet, Laurent
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 300 (02) : 663 - 672
  • [5] Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis
    Bazinet, L
    Araya-Farias, M
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 281 (01) : 188 - 196
  • [6] Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life
    Cao, Yuliang
    Xiao, Lifen
    Wang, Wei
    Choi, Daiwon
    Nie, Zimin
    Yu, Jianguo
    Saraf, Laxmikant V.
    Yang, Zhenguo
    Liu, Jun
    [J]. ADVANCED MATERIALS, 2011, 23 (28) : 3155 - +
  • [7] Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide
    Chen, Long
    Dong, Xiaoli
    Wang, Yonggang
    Xia, Yongyao
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Clescerl L. S., 1999, Standard methods for the examination of water and wastewater
  • [9] The chlor-alkali process: A review of history and pollution
    Crook, Jedidiah
    Mousavi, Aliyar
    [J]. ENVIRONMENTAL FORENSICS, 2016, 17 (03) : 211 - 217
  • [10] A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
    Ellis, B. L.
    Makahnouk, W. R. M.
    Makimura, Y.
    Toghill, K.
    Nazar, L. F.
    [J]. NATURE MATERIALS, 2007, 6 (10) : 749 - 753