Feature selection with missing data using mutual information estimators

被引:58
|
作者
Doquire, Gauthier [1 ]
Verleysen, Michel [1 ]
机构
[1] Catholic Univ Louvain, Machine Learning Grp, ICTEAM, B-1348 Louvain, Belgium
关键词
Feature selection; Missing data; Mutual information; FUNCTIONAL DATA; VALUES; IMPUTATION; REGRESSION; VARIABLES;
D O I
10.1016/j.neucom.2012.02.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is an important preprocessing task for many machine learning and pattern recognition applications, including regression and classification. Missing data are encountered in many real-world problems and have to be considered in practice. This paper addresses the problem of feature selection in prediction problems where some occurrences of features are missing. To this end, the well-known mutual information criterion is used. More precisely, it is shown how a recently introduced nearest neighbors based mutual information estimator can be extended to handle missing data. This estimator has the advantage over traditional ones that it does not directly estimate any probability density function. Consequently, the mutual information may be reliably estimated even when the dimension of the space increases. Results on artificial as well as real-world datasets indicate that the method is able to select important features without the need for any imputation algorithm, under the assumption of missing completely at random data. Moreover, experiments show that selecting the features before imputing the data generally increases the precision of the prediction models, in particular when the proportion of missing data is high. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [1] Is mutual information adequate for feature selection in regression?
    Frenay, Benoit
    Doquire, Gauthier
    Verleysen, Michel
    NEURAL NETWORKS, 2013, 48 : 1 - 7
  • [2] POLARIMETRIC SAR DATA FEATURE SELECTION USING MEASURES OF MUTUAL INFORMATION
    Tanase, R.
    Radoi, A.
    Datcu, M.
    Raducanu, D.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1140 - 1143
  • [3] K nearest neighbours with mutual information for simultaneous classification and missing data imputation
    Garcia-Laencina, Pedro J.
    Sancho-Gomez, Jose-Luis
    Figueiras-Vidal, Anibal R.
    Verleysen, Michel
    NEUROCOMPUTING, 2009, 72 (7-9) : 1483 - 1493
  • [4] Unsupervised Feature Selection for Outlier Detection in Categorical Data using Mutual Information
    Suri, N. N. R. Ranga
    Murty, M. Narasimha
    Athithan, G.
    2012 12TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2012, : 253 - 258
  • [5] Causal Feature Selection with Missing Data
    Yu, Kui
    Yang, Yajing
    Ding, Wei
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (04)
  • [6] Using Mutual Information for Feature Selection in Programmatic Advertising
    Ciesielczyk, Michal
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 290 - 295
  • [7] Feature selection using Joint Mutual Information Maximisation
    Bennasar, Mohamed
    Hicks, Yulia
    Setchi, Rossitza
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (22) : 8520 - 8532
  • [8] Feature Selection Using Mutual Information: An Experimental Study
    Liu, Huawen
    Liu, Lei
    Zhang, Huijie
    PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 235 - 246
  • [9] Feature selection using Decomposed Mutual Information Maximization
    Macedo, Francisco
    Valadas, Rui
    Carrasquinha, Eunice
    Oliveira, M. Rosario
    Pacheco, Antonio
    NEUROCOMPUTING, 2022, 513 : 215 - 232
  • [10] Biases in feature selection with missing data
    Seijo-Pardo, Borja
    Alonso-Betanzos, Amparo
    Bennett, Kristin P.
    Bolon-Canedo, Veronica
    Josse, Julie
    Saeed, Mehreen
    Guyon, Isabelle
    NEUROCOMPUTING, 2019, 342 : 97 - 112