Scattering from a discrete quasi-Hermitian delta function potential

被引:0
|
作者
Hammou, Amine B. [1 ]
机构
[1] USTO MB, Dept Phys, LEPM, Oran, Algeria
关键词
QUANTUM-MECHANICS; HAMILTONIANS; OPERATORS; SYMMETRY;
D O I
10.1088/1751-8113/45/21/215310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scattering from a discrete quasi-Hermitian delta function potential is studied and the metric operator is found. A generalized continuity relation in the physical Hilbert space H-phys is derived and the probability current density is defined. The reflection R and transmission T coefficients computed with this current are shown to obey the unitarity relation R + T = 1.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quasi-Hermitian pseudopotential for higher partial wave scattering
    Reichenbach, Iris
    Silberfarb, Andrew
    Stock, Rene
    Deutsch, Ivan H.
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [2] On Quasi-Hermitian Varieties
    Aguglia, A.
    Cossidente, A.
    Korchmaros, G.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (10) : 433 - 447
  • [3] ON THE THEORY OF QUASI-HERMITIAN BIEXTENSIONS OF CLOSED HERMITIAN OPERATORS
    GUBREEV, GM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (08): : 13 - 15
  • [4] Uniformly quasi-Hermitian groups are supramenable
    Azam, Mahmud
    Samei, Ebrahim
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 665 - 673
  • [5] Some remarks on quasi-Hermitian operators
    Antoine, Jean-Pierre
    Trapani, Camillo
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
  • [6] METRIC PSEUDOCONNECTIONS ON A QUASI-HERMITIAN MANIFOLD
    FALCITELLI, M
    PASTORE, AM
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (09): : 823 - 832
  • [7] PATH INTEGRALS FOR QUASI-HERMITIAN HAMILTONIANS
    Rivers, R. J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (05): : 919 - 932
  • [8] On the equivalence of certain quasi-Hermitian varieties
    Aguglia, Angela
    Giuzzi, Luca
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (02) : 124 - 138
  • [9] On the geometry of the Hermitian Veronese curve and its quasi-Hermitian surfaces
    Lavrauw, Michel
    Lia, Stefano
    Pavese, Francesco
    DISCRETE MATHEMATICS, 2023, 346 (10)
  • [10] Quasi-Hermitian locally compact groups are amenable
    Samei, Ebrahim
    Wiersma, Matthew
    ADVANCES IN MATHEMATICS, 2020, 359