Free Akivis algebras, primitive elements, and hyperalgebras

被引:50
作者
Shestakov, IP
Umirbaev, UU
机构
[1] Univ Sao Paulo, Inst Math & Estatist, BR-05315970 Sao Paulo, SP, Brazil
[2] S Kazakhstan State Univ, Shymkent 486050, Kazakhstan
关键词
Akivis algebra; universal enveloping algebra; primitive element; local analytic loop; hyperalgebra;
D O I
10.1006/jabr.2001.9123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Free Akivis algebras and primitive elements in their universal enveloping algebras are investigated. It is proved that subalgebras of free Akivis algebras are free and that finitely generated subalgebras arc finitely residual. Decidability of the word problem for the variety of Akivis algebras is also proved. The conjecture of K. H. Hofmann and K. Strambach (Problem 6.15 in [Topological and analytic loops, in "Quasigroups and Loops Theory and Applications," Series in Pure Mathematics (O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Eds.), Vol. 8, pp. 205-262, Heldermann Verlag, Berlin, 19901) on the structure of primitive elements is proved to be not valid, and a full system of primitive elements in free nonassociative algebra is constructed. Finally, it is proved that every algebra B can be considered as a hyperalgebra, that is, a system with a series of multilinear operations that plays a role of a tangent algebra for a local analytic loop, where the hyperalgebra operations on B are interpreted by certain primitive elements. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:533 / 548
页数:16
相关论文
共 17 条
[1]  
Akivis M. A., 1976, SIB MAT ZH, V17, P5
[2]  
Hofmann K. H., 1990, SIGMA SERIES PURE MA, V8, P205
[3]  
IRSOV A. I., 1953, MAT SBORNIK, V33, P441
[4]  
Jacobson N., 1979, LIE ALGEBRAS
[5]  
KRYAZHOVSKIKH GV, 1980, SIBERIAN MATH J+, V21, P688
[6]  
Kurosh A. G., 1947, MAT SBORNIK, V20, P119
[7]   ON SCHREIER VARIETIES OF LINEAR ALGEBRAS [J].
LEWIN, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 132 (02) :553-&
[8]  
Miheev P. O., 1987, SOV MATH DOKL, V297, p[801, 545]
[9]  
MIKHALEV AA, 1985, MAT ZAMETKI, V37, P653
[10]   Every Akivis algebra is linear [J].
Shestakov, IP .
GEOMETRIAE DEDICATA, 1999, 77 (02) :215-223