DEWAX2 Transcription Factor Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Leaves

被引:44
|
作者
Kim, Hyojin [1 ]
Go, Young Sam [1 ,2 ]
Suh, Mi Chung [1 ]
机构
[1] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Gwangju 61186, South Korea
[2] Rural Dev Adm, Cent Area Crop Breeding Div, Natl Inst Crop Sci, Suwon 16429, South Korea
基金
新加坡国家研究基金会;
关键词
AP2/ERF-type transcriptional factor; Arabidopsis thaliana; Cuticular wax; DEWAX2; Transcriptional repressor; BETA-KETOACYL-COENZYME; PRIMARY FATTY ALCOHOLS; DNA-BINDING DOMAIN; SYNTHETASE; LACS1; ACYL-COENZYME; BARRIER PROPERTIES; LIPID-COMPOSITION; GENE-EXPRESSION; ELEMENT; OVEREXPRESSION;
D O I
10.1093/pcp/pcy033
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aerial parts of terrestrial plants are covered with hydrophobic wax layers, which represent the primary barrier between plant cells and the environment and act to protect plants from abiotic and biotic stresses. Although total wax loads are precisely regulated in an environmental- or organ-specific manner, regulatory mechanisms underlying cuticular wax biosynthesis remain largely unknown. In this study, we characterized DEWAX2 (DECREASE WAX BIOSYNTHESIS2) which encodes an APETALA 2 (AP2)/ethylene response element-binding factor (ERF)-type transcription factor and is predominantly expressed in young seedlings, and rosette and cauline leaves. Total wax loads increased by approximately 12% and 16% in rosette and cauline leaves of dewax2, respectively, but were not significantly altered in the stems of dewax2 relative to the wild type (WT). The excess wax phenotype of dewax2 leaves was rescued upon expression of DEWAX2 driven by its own promoter. Overexpression of DEWAX2 decreased total wax loads by approximately 15% and 26% in the stems and rosette leaves compared with those of the WT, respectively. DEWAX2:eYFP (enhanced yellow fluorescent protein) was localized to the nucleus in Arabidopsis roots and hypocotyls. DEWAX2 possessed transcriptional repression activity in tobacco protoplasts. Transcriptome and quantitative real-time PCR analyses showed that the transcript levels of CER1, ACLA2, LACS1, LACS2 and KCS12 were down-regulated in DEWAX2 overexpression lines compared with the WT. Transient transcriptional assays showed that DEWAX2 represses the expression of its putative target genes. Quantitative chromatin immunoprecipitation-PCR revealed that DEWAX2 binds directly to the GCC motifs of the LACS1, LACS2, KCS12 and CER1 promoters. These results suggest that DEWAX2-mediated transcriptional repression may contribute to the total wax load in Arabidopsis leaves.
引用
收藏
页码:966 / 977
页数:12
相关论文
共 50 条
  • [31] Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana
    Li, Lu
    Zhu, Zhen
    Liu, Juan
    Zhang, Yu
    Lu, Yang
    Zhao, Jinming
    Xing, Han
    Guo, Na
    PLANTS-BASEL, 2023, 12 (16):
  • [32] A WRKY transcription factor from Malus domestica negatively regulates dehydration stress in transgenic Arabidopsis
    Duan, Guo-feng
    Li, Li-juan
    Liu, Qun-long
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (02) : 541 - 548
  • [33] Transcription Factor CsWIN1 Regulates Pericarp Wax Biosynthesis in Cucumber Grafted on Pumpkin
    Zhang, Jian
    Yang, Jingjing
    Yang, Yang
    Luo, Jiang
    Zheng, Xuyang
    Wen, Changlong
    Xu, Yong
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [34] Arabidopsis Transcription Factor RTP3 Negatively Regulates Resistance Against Phytophthora parasitica
    Lu, W.
    Deng, F.
    Shan, W. X.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2019, 32 (10) : 94 - 94
  • [35] A WRKY transcription factor from Malus domestica negatively regulates dehydration stress in transgenic Arabidopsis
    Guo-feng Duan
    Li-juan Li
    Qun-long Liu
    Acta Physiologiae Plantarum, 2014, 36 : 541 - 548
  • [36] EgMIXTA1, a MYB-Type Transcription Factor, Promotes Cuticular Wax Formation in Eustoma grandiflorum Leaves
    Wang, Lishan
    Xue, Wanjie
    Li, Xueqi
    Li, Jingyao
    Wu, Jiayan
    Xie, Linan
    Kawabata, Saneyuki
    Li, Yuhua
    Zhang, Yang
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [37] A cotton NAC domain transcription factor, GhFSN5, negatively regulates secondary cell wall biosynthesis and anther development in transgenic Arabidopsis
    Sun, Qianwen
    Huang, Junfeng
    Guo, Yifan
    Yang, Mingming
    Guo, Yanjun
    Li, Juan
    Zhang, Jie
    Xu, Wenliang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 146 : 303 - 314
  • [38] The Transcription Factor CoxR Negatively Regulates Alkane Hydroxylase Transcription
    Peterson, Celeste
    O'Connor, Thomas
    Abbondanza, Domenic
    Smolarek, Brandon
    Dey, Arup
    FASEB JOURNAL, 2021, 35
  • [39] The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato
    Weng, Lin
    Zhao, Fangfang
    Li, Rong
    Xu, Changjie
    Chen, Kunsong
    Xiao, Han
    PLANT PHYSIOLOGY, 2015, 167 (03) : 931 - +
  • [40] Arabidopsis TEMPRANILLO1 transcription factor AtTEM1 negatively regulates drought tolerance
    Luo, Guangyu
    Liu, Ailing
    Zhou, Xiaoyun
    Zhang, Xianwen
    Peng, Yan
    Chen, Xinbo
    PLANT GROWTH REGULATION, 2017, 83 (01) : 119 - 127