Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method

被引:50
作者
Gonzalez-Gaxiola, O. [1 ]
Biswas, Anjan [2 ,3 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2019年 / 179卷
关键词
Radhakrishnan-Kundu-Lakshmanan equation; Laplace-Adomian decomposition method; Optical solitons; Kerr law; PERTURBATION;
D O I
10.1016/j.ijleo.2018.10.173
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper applies Laplace-Adomian decomposition scheme to display numerical dispersive bright and dark optical solitons that are modeled by Radhakrishnan-Kundu-Lakshmanan equation. The computational results are achieved using MATHEMATICA. The maximum error for these plots is also displayed.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 10 条
  • [1] Adomian G., 1994, SOLVING FRONTIER PRO
  • [2] Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis
    Biswas, Anjan
    [J]. OPTIK, 2018, 171 : 217 - 220
  • [3] Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes
    Biswas, Anjan
    Yildirim, Yakup
    Yasar, Emrullah
    Mahmood, Mohammad F.
    Alshomrani, Ali Saleh
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2018, 163 : 126 - 136
  • [4] Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by extended trial function scheme
    Biswas, Anjan
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Alshomrani, Ali Saleh
    [J]. OPTIK, 2018, 160 : 415 - 427
  • [5] 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation
    Biswas, Anjan
    [J]. PHYSICS LETTERS A, 2009, 373 (30) : 2546 - 2548
  • [6] Convenient analytic recurrence algorithms for the Adomian polynomials
    Duan, Jun-Sheng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6337 - 6348
  • [7] Exp-Function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation
    Ganji, D. D.
    Asgari, A.
    Ganji, Z. Z.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) : 201 - 209
  • [8] Khuri S.A., 2001, Journal of Applied Mathematics, V1, P141, DOI DOI 10.1155/S1110757X01000183
  • [9] TOPOLOGICAL 1-SOLITON SOLUTION OF THE GENERALIZED RADHAKRISHNAN, KUNDU, LAKSHMANAN EQUATION WITH NONLINEAR DISPERSION
    Sturdevant, Benjamin
    Lott, Dawn A.
    Biswas, Anjan
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (16): : 1825 - 1831
  • [10] Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation
    So, Joseph W.-H.
    Wu, Jianhong
    Yang, Yuanjie
    [J]. Applied Mathematics and Computation (New York), 2000, 111 (01): : 33 - 51