Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method

被引:50
作者
Gonzalez-Gaxiola, O. [1 ]
Biswas, Anjan [2 ,3 ]
机构
[1] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2019年 / 179卷
关键词
Radhakrishnan-Kundu-Lakshmanan equation; Laplace-Adomian decomposition method; Optical solitons; Kerr law; PERTURBATION;
D O I
10.1016/j.ijleo.2018.10.173
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper applies Laplace-Adomian decomposition scheme to display numerical dispersive bright and dark optical solitons that are modeled by Radhakrishnan-Kundu-Lakshmanan equation. The computational results are achieved using MATHEMATICA. The maximum error for these plots is also displayed.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 10 条
[1]  
Adomian G., 1994, SOLVING FRONTIER PRO
[2]   Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis [J].
Biswas, Anjan .
OPTIK, 2018, 171 :217-220
[3]   Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Mahmood, Mohammad F. ;
Alshomrani, Ali Saleh ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 163 :126-136
[4]   Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by extended trial function scheme [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Alshomrani, Ali Saleh .
OPTIK, 2018, 160 :415-427
[5]   1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2009, 373 (30) :2546-2548
[6]   Convenient analytic recurrence algorithms for the Adomian polynomials [J].
Duan, Jun-Sheng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6337-6348
[7]   Exp-Function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation [J].
Ganji, D. D. ;
Asgari, A. ;
Ganji, Z. Z. .
ACTA APPLICANDAE MATHEMATICAE, 2008, 104 (02) :201-209
[8]  
Khuri S.A., 2001, Journal of Applied Mathematics, V1, P141, DOI DOI 10.1155/S1110757X01000183
[9]   TOPOLOGICAL 1-SOLITON SOLUTION OF THE GENERALIZED RADHAKRISHNAN, KUNDU, LAKSHMANAN EQUATION WITH NONLINEAR DISPERSION [J].
Sturdevant, Benjamin ;
Lott, Dawn A. ;
Biswas, Anjan .
MODERN PHYSICS LETTERS B, 2010, 24 (16) :1825-1831
[10]   Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation [J].
So, Joseph W.-H. ;
Wu, Jianhong ;
Yang, Yuanjie .
Applied Mathematics and Computation (New York), 2000, 111 (01) :33-51