Scaling between periodic Anderson and Kondo lattice models

被引:5
|
作者
Dong, R. [1 ]
Otsuki, J. [2 ,3 ]
Savrasov, S. Y. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
GROUND-STATE; HUBBARD-MODEL; PHASE-DIAGRAM; APPROXIMATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.87.155106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. DOI: 10.1103/PhysRevB.87.155106
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Half-filled Kondo lattice on the honeycomb lattice
    Zhong, Yin
    Liu, Ke
    Wang, Yu-Feng
    Wang, Yong-Qiang
    Luo, Hong-Gang
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (05)
  • [12] Kondo behavior in the asymmetric Anderson model: Analytic approach
    Janis, Vaclav
    Augustinsky, Pavel
    PHYSICAL REVIEW B, 2008, 77 (08):
  • [13] Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
    Sato, Toshihiro
    Assaad, Fakher F.
    Grover, Tarun
    PHYSICAL REVIEW LETTERS, 2018, 120 (10)
  • [14] Energy-scale cascade and correspondence between Mott and Kondo lattice physics
    Hu, Danqing
    Tong, Ning-Hua
    Yang, Yi-feng
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [15] Critical quasiparticles in single-impurity and lattice Kondo models
    Vojta, M.
    Bulla, R.
    Woelfle, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (06) : 1127 - 1146
  • [16] Kondo Lattice Models for Rare-Earth and Actinide Systems
    Coqblin, B.
    ACTA PHYSICA POLONICA A, 2012, 121 (5-6) : 1005 - 1013
  • [17] Two-channel pseudogap Kondo and Anderson models: Quantum phase transitions and non-Fermi liquids
    Schneider, Imke
    Fritz, Lars
    Anders, Frithjof B.
    Benlagra, Adel
    Vojta, Matthias
    PHYSICAL REVIEW B, 2011, 84 (12):
  • [18] CeNiAsO: an antiferromagnetic dense Kondo lattice
    Luo, Yongkang
    Han, Han
    Tan, Hao
    Lin, Xiao
    Li, Yuke
    Jiang, Shuai
    Feng, Chunmu
    Dai, Jianhui
    Cao, Guanghan
    Xu, Zhu'an
    Li, Shiyan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (17)
  • [19] Fermionic representations of the Kondo lattice model
    Nilsson, Johan
    PHYSICAL REVIEW B, 2011, 83 (23)
  • [20] Competition between Anderson Localization and Antiferromagnetism in Correlated Lattice Fermion Systems with Disorder
    Byczuk, Krzysztof
    Hofstetter, Walter
    Vollhardt, Dieter
    PHYSICAL REVIEW LETTERS, 2009, 102 (14)