Scaling between periodic Anderson and Kondo lattice models

被引:5
|
作者
Dong, R. [1 ]
Otsuki, J. [2 ,3 ]
Savrasov, S. Y. [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
GROUND-STATE; HUBBARD-MODEL; PHASE-DIAGRAM; APPROXIMATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.87.155106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric case of PAM at half filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. DOI: 10.1103/PhysRevB.87.155106
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Emergence of electronic modes by doping Kondo insulators in the Kondo lattice and periodic Anderson models
    Kohno, Masanori
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [2] Strong-coupling limit of depleted Kondo- and Anderson-lattice models
    Titvinidze, Irakli
    Schwabe, Andrej
    Potthoff, Michael
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (02)
  • [3] Dynamical mean-field study of partial Kondo screening in the periodic Anderson model on the triangular lattice
    Aulbach, Maximilian W.
    Assaad, Fakher F.
    Potthoff, Michael
    PHYSICAL REVIEW B, 2015, 92 (23)
  • [4] Competition between Hund's coupling and Kondo effect in a one-dimensional extended periodic Anderson model
    Hagymasi, I.
    Solyom, J.
    Legeza, Oe.
    PHYSICAL REVIEW B, 2015, 92 (03)
  • [5] Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
    Cheng, Mengxing
    Chowdhury, Tathagata
    Mohammed, Aaron
    Ingersent, Kevin
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [6] The Kondo Lattice Models and Magnetism for Cerium and Uranium Systems
    Coqblin, B.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 913 - 918
  • [7] Anderson localization in a periodic photonic lattice with a disordered boundary
    Naether, U.
    Meyer, J. M.
    Stuetzer, S.
    Tuennermann, A.
    Nolte, S.
    Molina, M. I.
    Szameit, A.
    OPTICS LETTERS, 2012, 37 (04) : 485 - 487
  • [8] Quantum criticality in the pseudogap Bose-Fermi Anderson and Kondo models: Interplay between fermion- and boson-induced Kondo destruction
    Pixley, J. H.
    Kirchner, Stefan
    Ingersent, Kevin
    Si, Qimiao
    PHYSICAL REVIEW B, 2013, 88 (24):
  • [9] Novel Magnetic Orders and Ice Phases in Frustrated Kondo-Lattice Models
    Chern, Gia-Wei
    SPIN, 2015, 5 (02)
  • [10] Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds
    Thomas, Christopher
    da Rosa Simoes, Acirete S.
    Iglesias, J. R.
    Lacroix, C.
    Perkins, N. B.
    Coqblin, B.
    PHYSICAL REVIEW B, 2011, 83 (01)