PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS

被引:67
作者
Atanackovic, Teodor M. [1 ]
Pilipovic, Stevan [2 ]
Zorica, Dusan [3 ,4 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg D Obradovica 4, Novi Sad 21000, Serbia
[3] Serbian Acad Arts & Sci, Math Inst, Kneza Mihaila 36, Beograd 11000, Serbia
[4] Univ Novi Sad, Dept Phys, Fac Sci, Trg D Obradovica 4, Novi Sad 21000, Serbia
关键词
Caputo-Fabrizio fractional derivative; variational calculus; linear viscoelasticity; DIFFERENTIAL-EQUATIONS; EULER-LAGRANGE; FORMULATION;
D O I
10.1515/fca-2018-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Caputo-Fabrizio fractional derivative is analyzed in classical and distributional settings. The integral inequalities needed for application in linear viscoelasticity are presented. They are obtained from the entropy inequality in a weak form. Moreover, integration by parts, an expansion formula, approximation formula and generalized variational principles of Hamilton's type are given. Hamilton's action integral in the first principle, do not coincide with the lower bound in the fractional integral, while in the second principle the minimization is performed with respect to a function from a specified space and the order of fractional derivative.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 27 条
[1]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 2004, FRACT CALC APPL ANAL
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]   On a numerical scheme for solving differential equations of fractional order [J].
Atanackovic, T. M. ;
Stankovic, B. .
MECHANICS RESEARCH COMMUNICATIONS, 2008, 35 (07) :429-438
[6]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[7]  
Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes
[8]   On a nonlinear distributed order fractional differential equation [J].
Atanackovic, Teodor M. ;
Oparnica, Ljubica ;
Pihpovic, Stevan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :590-608
[9]   Complex order fractional derivatives in viscoelasticity [J].
Atanackovic, Teodor M. ;
Konjik, Sanja ;
Pilipovic, Stevan ;
Zorica, Dusan .
MECHANICS OF TIME-DEPENDENT MATERIALS, 2016, 20 (02) :175-195
[10]   Expansion formula for fractional derivatives in variational problems [J].
Atanackovic, Teodor M. ;
Janev, Marko ;
Konjik, Sanja ;
Pilipovic, Stevan ;
Zorica, Dusan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :911-924