Converting Between SMOS and SMAP Level-1 Brightness Temperature Observations Over Nonfrozen Land

被引:35
作者
De Lannoy, Gabrielle J. M. [1 ,2 ]
Reichle, Rolf H. [1 ]
Peng, Jinzheng [1 ,2 ]
Kerr, Yann [3 ]
Castro, Rita [4 ]
Kim, Edward J. [1 ]
Liu, Qing [1 ,5 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Space Res Assoc, Columbia, MD 21046 USA
[3] Ctr Etud Spatiales Biosphere, F-31401 Toulouse, France
[4] DEIMOS Engenharia, P-1998023 Lisbon, Portugal
[5] Sci Syst & Applicat, Lanham, MD 20706 USA
关键词
Atmosphere; brightness temperature (Tb); galaxy; soil moisture; Soil Moisture Active Passive (SMAP); Soil Moisture Ocean Salinity (SMOS); RADIATIVE-TRANSFER MODEL; L-BAND;
D O I
10.1109/LGRS.2015.2437612
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions provide Level-1 brightness temperature (Tb) observations that are used for global soil moisture estimation. However, the nature of these Tb data differs: the SMOS Tb observations contain atmospheric and select reflected extraterrestrial ("Sky") radiation, whereas the SMAP Tb data are corrected for these contributions, using auxiliary near-surface information. Furthermore, the SMOS Tb observations are multiangular, whereas the SMAP Tb is measured at 40 degrees incidence angle only. This letter discusses how SMOS Tb, SMAP Tb, and radiative transfer modeling components can be aligned in order to enable a seamless exchange of SMOS and SMAP Tb data in soil moisture retrieval and assimilation systems. The aggregated contribution of the atmospheric and reflected Sky radiation is, on average, about 1 K for horizontally polarized Tb and 0.5 K for vertically polarized Tb at 40 degrees incidence angle, but local and short-term values regularly exceed 5 K.
引用
收藏
页码:1908 / 1912
页数:5
相关论文
共 12 条
[1]  
De Lannoy G.J.M., 2015, HDB HYDROMETEOROLOGI
[2]   Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations [J].
De Lannoy, Gabrielle J. M. ;
Reichle, Rolf H. ;
Pauwels, Valentijn R. N. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) :765-785
[3]  
Entekhabi D., 2014, SMAP Handbook-Soil Moisture Active Passive-Mapping Soil Moisture and Freeze/Thaw from Space, P400
[4]  
Floury N., 2013, SOTNESAEEP2009412V3
[5]  
Kerr Y., 2013, SOTNESLSMGS0001 CBSA, V1
[6]   The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle [J].
Kerr, Yann H. ;
Waldteufel, Philippe ;
Wigneron, Jean-Pierre ;
Delwart, Steven ;
Cabot, Francois ;
Boutin, Jacqueline ;
Escorihuela, Maria-Jose ;
Font, Jordi ;
Reul, Nicolas ;
Gruhier, Claire ;
Juglea, Silvia Enache ;
Drinkwater, Mark R. ;
Hahne, Achim ;
Martin-Neira, Manuel ;
Mecklenburg, Susanne .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :666-687
[7]   Galactic noise and passive microwave remote sensing from space at L-band [J].
Le Vine, DM ;
Abraham, S .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (01) :119-129
[8]  
Lucchesi R., 2013, GEOS5 FPIT NASA GSFC
[9]   Two-year global simulation of L-band brightness temperatures over land [J].
Pellarin, T ;
Wigneron, JP ;
Calvet, JC ;
Berger, M ;
Douville, H ;
Ferrazzoli, P ;
Kerr, YH ;
Lopez-Baeza, E ;
Pulliainen, J ;
Simmonds, LP ;
Waldteufel, P .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :2135-2139
[10]   Global Simplified Atmospheric Radiative Transfer Model at L-Band [J].
Peng, Jinzheng ;
Kim, Edward ;
Piepmeier, Jeffrey .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (03) :437-440