MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy

被引:44
|
作者
Qiu, Ruixia [1 ]
Li, Wen [2 ]
Liu, Yunhai [2 ]
机构
[1] 1 Peoples Hosp Jining City, Dept Med Affairs, Jining, Shandong, Peoples R China
[2] 1 Peoples Hosp Jining City, Dept Emergency, 6 Jiankang Rd, Jining 272011, Shandong, Peoples R China
关键词
microRNA-204; H9C2; cells; Hypoxia/reoxygenation injury; Apoptosis; Autophagy; SIRT1; ISCHEMIA/REPERFUSION INJURY; MYOCARDIAL-INFARCTION; APOPTOSIS; CARDIOMYOCYTES; EXPRESSION; TARGET; SIRT1;
D O I
10.1016/j.biopha.2018.01.165
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Ischemia/reperfusion (I/R) injury is a main cause of acute myocardial infarction, and the pathogenesis of I/R injury is still not definitely confirmed. In the present study, we aimed to explore the roles of miR-204 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. The H9C2 cells were subjected to hypoxia for 12 h followed by reoxygenation for another 24 h, and we found that miR-204 was significantly down-regulated after H/R treatment. Transfection of miR-204 mimics attenuated the H/R-induced impaired cell viability and increased apoptosis rates. Furthermore, SIRT1 was identified as a direct target of miR-204, and its expression is negatively regulated by miR-204. Forced expression of SIRT1 could partly rescue the effects of miR-204 on H/Rinduced apoptosis and autophagy. Taken together, our study first revealed that overexpression of miR-204 has a protective effect against myocardial I/R injury.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [1] Lycopene protects against apoptosis in hypoxia/reoxygenation-induced H9C2 myocardioblast cells through increased autophagy
    Chen, Fei
    Sun, Ze-Wei
    Ye, Li-Fang
    Fu, Guo-Sheng
    Mou, Yun
    Hu, Shen-Jiang
    MOLECULAR MEDICINE REPORTS, 2015, 11 (02) : 1358 - 1365
  • [2] Inhibition of MicroRNA-29b Protects H9C2 Cardiomyocytes from Hypoxia/Reoxygenation-Induced Apoptosis
    Zhu, Hang
    Chen, Yun-Dai
    Li, Tong
    Sun, Ze-Lin
    Xie, Qi-Ying
    ANALYTICAL AND QUANTITATIVE CYTOPATHOLOGY AND HISTOPATHOLOGY, 2016, 38 (03): : 139 - 147
  • [3] Saprirearine protects H9c2 cardiomyocytes against hypoxia/ reoxygenation-induced apoptosis by activating Nrf2
    Zhang, Gang
    Zhang, Dongying
    Zhang, Xiwen
    Yu, Kun
    Jiang, Aixia
    ACTA BIOCHIMICA POLONICA, 2022, 69 (02) : 429 - 436
  • [4] Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes
    Wu, Dongkai
    Jiang, Haihe
    Chen, Shengxi
    Zhang, Heng
    MOLECULAR MEDICINE REPORTS, 2015, 11 (05) : 3988 - 3994
  • [5] MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway
    Huang, Zhouqing
    Wu, Shengjie
    Kong, Fanqi
    Cai, Xueli
    Ye, Bozhi
    Shan, Peiren
    Huang, Weijian
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2017, 21 (03) : 467 - 474
  • [6] HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes
    Chen, Dongling
    Jin, Zhe
    Zhang, Jingjing
    Jiang, Linlin
    Chen, Kai
    He, Xianghu
    Song, Yinwei
    Ke, Jianjuan
    Wang, Yanlin
    PLOS ONE, 2016, 11 (05):
  • [7] Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway
    Liao, Bihong
    Chen, Ruimian
    Lin, Feng
    Mai, Aihuan
    Chen, Jie
    Li, Huimin
    Dong, Shaohong
    Xu, Zhenglei
    SAUDI PHARMACEUTICAL JOURNAL, 2017, 25 (04) : 615 - 619
  • [8] Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes
    Zhao, Ting-Ting
    Yang, Tian-Lun
    Gong, Li
    Wu, Pei
    GENE, 2018, 666 : 92 - 99
  • [9] Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells
    Chang, Guanglei
    Zhang, Dongying
    Liu, Jian
    Zhang, Peng
    Ye, Lin
    Lu, Kai
    Duan, Qin
    Zheng, Aihua
    Qin, Shu
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (04) : 414 - 422
  • [10] Silencing Rac1 protects H9c2 cells against hypoxia-reoxygenation injury by inactivation of notch pathway
    Liu, Huimin
    Xu, Maoen
    Ma, Lijia
    Yu, Huai
    Hou, Jingbo
    Yu, Bo
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016, 9 (12): : 12543 - 12550