Automatic Optical Surface Inspection of Wind Turbine Rotor Blades using Convolutional Neural Networks

被引:26
作者
Denhof, Dimitri [1 ]
Staar, Benjamin [1 ]
Luetjen, Michael [1 ]
Freitag, Michael [1 ,2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Hsch Ring 20, D-28359 Bremen, Germany
[2] Univ Bremen, Fac Prod, Engn, Bibliothekstr 1, D-28359 Bremen, Germany
来源
52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS) | 2019年 / 81卷
关键词
Convolutional neural network; Deep learning; Optical surface Inspection; Wind turbine rotor blade; ARCHITECTURES;
D O I
10.1016/j.procir.2019.03.286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The operation of wind turbines includes the regular surface inspection of their rotor blades. This leads to considerable downtimes and expenses due to the manual inspection process. A possible solution is the automation of this process by using drones or robots. In this article, we present a key component for such an approach by automating the visual surface inspection with convolutional neural networks (CNN). We provide insights into CNN model selection based on available hardware and training data. We further show that all CNN models reach over 96 % median classification accuracy with the best model, ResNet50, reaching 97.4 %. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1166 / 1170
页数:5
相关论文
共 43 条
  • [1] [Anonymous], How transferable are features in deep neural networks?
  • [2] [Anonymous], P IEEE 1 INT C APPL
  • [3] [Anonymous], 2018, 2018 IEEE INT C PROG
  • [4] [Anonymous], 2000, ANN STAT ADDITIVE LO
  • [5] [Anonymous], 2017, ERNEUERBARE ENERGIEN
  • [6] Bengio Y., PRACTICAL RECOMMENDA
  • [7] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [8] Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types
    Cha, Young-Jin
    Choi, Wooram
    Suh, Gahyun
    Mahmoudkhani, Sadegh
    Buyukozturk, Oral
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2018, 33 (09) : 731 - 747
  • [9] Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
    Cha, Young-Jin
    Choi, Wooram
    Buyukozturk, Oral
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) : 361 - 378
  • [10] Chollet F., 2015, Keras: Simple Flexible Powerful