Stability estimates for the identification of nonlinear heat transfer laws

被引:13
作者
Rosch, A
机构
[1] TU Chemnitz-Zwickau, FB Mathematik, PSF 964
关键词
D O I
10.1088/0266-5611/12/5/015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the heat equation with a nonlinear function a! in the boundary condition which depends only on the solution u of the initial-boundary-value problem. The unknown function a belongs to a set of admissible uniformly Lipschitz continuous functions. For this problem stability estimates of the form \\alpha(1) - alpha(2)\\ less than or equal to c\\u(1) - u(2)\\(mu) With different norms are derived. Finally an interesting example is discussed.
引用
收藏
页码:743 / 756
页数:14
相关论文
共 15 条
[1]   IDENTIFICATION OF NONLINEARITY OF A QUASILINEAR PARABOLIC EQUATION [J].
CHAVENT, G ;
LEMONNIER, P .
APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02) :121-162
[2]  
HACKBUSCH W, 1989, INTEGRALGLEICHUNGEN
[3]   THE AUGMENTED LAGRANGIAN METHOD FOR PARAMETER-ESTIMATION IN ELLIPTIC-SYSTEMS [J].
ITO, K ;
KUNISCH, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (01) :113-136
[4]  
James J.V., 1985, INVERSE HEAT CONDUCT, P308
[5]  
Kaiser T., 1987, WISSENSCHAFTLICHE ZE, V29, P212
[6]   ESTIMATION OF A TEMPORALLY AND SPATIALLY VARYING DIFFUSION-COEFFICIENT IN A PARABOLIC-SYSTEM BY AN AUGMENTED LAGRANGIAN TECHNIQUE [J].
KUNISCH, K ;
PEICHL, G .
NUMERISCHE MATHEMATIK, 1991, 59 (05) :473-509
[7]  
LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
[8]  
Morozov V.A., 2012, Methods for Solving Incorrectly Posed Problems
[9]  
Rosch A., 1992, Archives of Control Sciences, V1(37), P183
[10]   IDENTIFICATION OF NONLINEAR HEAT-TRANSFER LAWS BY OPTIMAL-CONTROL [J].
ROSCH, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (3-4) :417-434