Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery

被引:52
|
作者
Li, Haojie [1 ]
Su, Qingmei [1 ,2 ]
Kang, Jinwei [1 ]
Huang, Min [1 ]
Feng, Miao [1 ]
Feng, Huagui [1 ]
Huang, Ping [1 ]
Du, Gaohui [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Inst Phys Chem, Jinhua 321004, Peoples R China
[2] Shaanxi Univ Sci & Technol, Inst Atom & Mol Sci, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage and conversion; SnO2 hollow spheres; Porous structure; Lithium ion batteries; COMPOSITE; MECHANISM; ELECTRODE; CAPACITY; STORAGE;
D O I
10.1016/j.matlet.2018.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SnO2 has been studied as a promising anode material for lithium-ion batteries due to its high theoretical capacity. However, the large volume change (>300%) and severe structural collapse during cycles are serious. To solve these issues, the porous SnO2 dumbbell-shaped hollow microspheres (DSHSs) were synthesized by a sacrificial template method. The porous SnO2 DSHSs deliver a capacity of 695 mAh g(-1) when the current density returns from 1600 to 100 mA g(-1). After being tested at larger current density of 1.0 A g(-1) for 100 cycles, the capacity retain 602 mAh g(-1). The superior performance of porous SnO2 DSHSs can be attributed to the porous and hollow microstructure, which provides more lithium storage sites; shorter Li-ion diffusion length and sufficient void space. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 280
页数:5
相关论文
共 50 条
  • [1] Hierarchical SnO2 hollow nanotubes as anodes for high performance lithium-ion battery
    Liu, Yang
    Zhang, Peng
    Xue, Yuxiong
    Zhou, Min
    Cao, Rongxing
    Chen, Penghui
    Zeng, Xianghua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (18) : 22944 - 22952
  • [2] SnO2 nano-spheres/graphene hybrid for high-performance lithium ion battery anodes
    Liu, Jia
    Huang, Jiamu
    Hao, Longlong
    Liu, Hongdong
    Li, Xinlu
    CERAMICS INTERNATIONAL, 2013, 39 (08) : 8623 - 8627
  • [3] SnO2/Sn Nanoparticles Embedded in an Ordered, Porous Carbon Framework for High-Performance Lithium-Ion Battery Anodes
    Wang, Zhi-Qiang
    Wang, Ming-Shan
    Yang, Zhen-Liang
    Bai, Yong-Shun
    Ma, Yan
    Wang, Guo-Liang
    Huang, Yun
    Li, Xing
    CHEMELECTROCHEM, 2017, 4 (02): : 345 - 352
  • [4] Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes
    Choi, Jaewon
    Myung, Yoon
    Gu, Min Guk
    Kim, Sung-Kon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 71 : 345 - 350
  • [5] Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes
    Chen, Lechen
    Ma, Xiaohang
    Wang, Mozhen
    Chen, Chunhua
    Ge, Xuewu
    ELECTROCHIMICA ACTA, 2016, 215 : 42 - 49
  • [6] Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes
    Chen, Weimin
    Maloney, Scott
    Wang, Wenyong
    NANOTECHNOLOGY, 2016, 27 (41)
  • [7] Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries
    Man, Jianzong
    Liu, Kun
    Du, Yehong
    Sun, Juncai
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 256
  • [8] Conductive framework supported high rate performance of SnO2 hollow nanofibers for lithium battery anodes
    Pham-Cong, De
    Kim, Ji Yoon
    Park, Jung Soo
    Kim, Jae Hyun
    Kim, Jong-Pil
    Jeong, Euh-Duck
    Kim, Jinwoo
    Jeong, Se-Young
    Cho, Chae-Ryong
    ELECTROCHIMICA ACTA, 2015, 161 : 1 - 9
  • [9] Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes
    Hong, Ye
    Mao, Wenfeng
    Hu, Qianqian
    Chang, Shiyong
    Li, Dejun
    Zhang, Jingbo
    Liu, Gao
    Ai, Guo
    JOURNAL OF POWER SOURCES, 2019, 428 : 44 - 52
  • [10] SnO2@MoO2/Carbon Ternary Hollow Nanocomposites with Robust Shell as High-Performance Lithium-Ion-Battery Anodes
    Wang, Yong
    Mao, Peiyuan
    Rao, Shun
    Guo, Wenbin
    Zhang, Fanchao
    Xiao, Pandeng
    Zhang, Wen
    CHEMELECTROCHEM, 2020, 7 (01): : 112 - 117