Artificial Neural Networks using Poly-Si Thin-Film Transistors

被引:0
作者
Sugisaki, Sumio [1 ]
Morita, Ryohei [1 ]
Yamaguchi, Yuki [1 ]
Matsuda, Tokiyoshi [1 ]
Kimura, Mutsumi [1 ]
机构
[1] Ryukoku Univ, Dept Elect & Informat, Otsu, Shiga 5202194, Japan
来源
2016 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK) | 2016年
关键词
artificial neural network; poly-Si; thin-film transistors; ARCHITECTURE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are developing neural networks using thinfilm transistors (TFTs). By adopting an interconnect-type neural network and utilizing a characteristic degradation of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed that the learning efficiency can be improved by gradually increasing the control voltage. This is a result leading to a robust and tolerant system in real situation.
引用
收藏
页码:76 / 77
页数:2
相关论文
共 5 条
[1]   A 336-NEURON, 28K-SYNAPSE, SELF-LEARNING NEURAL NETWORK CHIP WITH BRANCH-NEURON-UNIT ARCHITECTURE [J].
ARIMA, Y ;
MASHIKO, K ;
OKADA, K ;
YAMADA, T ;
MAEDA, A ;
NOTANI, H ;
KONDOH, H ;
KAYANO, S .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (11) :1637-1644
[2]  
Dayhoff J.E., 1990, Neural Network Architectures: An Introduction
[3]   An Artificial Neural Network at Device Level Using Simplified Architecture and Thin-Film Transistors [J].
Kasakawa, Tomohiro ;
Tabata, Hiroki ;
Onodera, Ryo ;
Kojima, Hiroki ;
Kimura, Mutsumi ;
Hara, Hiroyuki ;
Inoue, Satoshi .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (10) :2744-2750
[4]  
Kimura M., IEEE T ELECT D UNPUB
[5]  
Yamaguchi Y., 2013, IMFEDK 2013, P78