In-plane and out-of-plane constraint parameters along a three-dimensional crack-front stress field under creep loading

被引:48
作者
Matvienko, Y. G. [1 ]
Shlyannikov, V. N. [2 ]
Boychenko, N. V. [2 ]
机构
[1] Russian Acad Sci, Mech Engn Res Inst, Moscow 101990, Russia
[2] Russian Acad Sci, Res Ctr Power Engn Problems, Kazan 420111, Russia
关键词
crack-front stress fields; creep; in-plane and out-of-plane constraint parameters; DUCTILE FRACTURE; TOUGHNESS; QUANTIFICATION; PREDICTION; TRANSITION; BORDER;
D O I
10.1111/j.1460-2695.2012.01722.x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Full-field three-dimensional (3D) numerical analyses was performed to determine in-plane and out-of-plane constraint effect on crack-front stress fields under creep conditions of finite thickness boundary layer models and different specimen geometries. Several parameters are used to characterize constraint effects including the non-singular T-stresses, the local triaxiality parameter, the Tz-factor of the stress-state in a 3D cracked body and the second-order-term amplitude factor. The constraint parameters are determined for centre-cracked plate, three-point bend specimen and compact tension specimen. Discrepancies in constraint parameter distribution on the line of crack extension and along crack front depending on the thickness of the specimens have been observed under different loading conditions of creeping power law hardening material for various configurations of specimens.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 1999, ANSYS STRUCT AN GUID
[2]   Predicting creep crack initiation in austenitic and ferritic steels using the creep toughness parameter and time-dependent failure assessment diagram [J].
Davies, C. M. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2009, 32 (10) :820-836
[3]  
Davies CM, 2010, FATIGUE FRACT ENG M, V33, P911
[4]  
EFTIS J, 1978, ENG FRACT MECH, V10, P43, DOI 10.1016/0013-7944(78)90049-8
[5]   Three-dimensional analyses of plastic constraint for through-thickness cracked bodies [J].
Guo, W .
ENGINEERING FRACTURE MECHANICS, 1999, 62 (4-5) :383-407
[6]   ELASTOPLASTIC 3-DIMENSIONAL CRACK BORDER FIELD .1. SINGULAR STRUCTURE OF THE FIELD [J].
GUO, WL .
ENGINEERING FRACTURE MECHANICS, 1993, 46 (01) :93-104
[7]  
Hall DE, 1998, FATIGUE FRACT ENG M, V21, P387, DOI 10.1046/j.1460-2695.1998.00542.x
[8]   The stress triaxiality constraint and the Q-value as a ductile fracture parameter [J].
Henry, BS ;
Luxmoore, AR .
ENGINEERING FRACTURE MECHANICS, 1997, 57 (04) :375-390
[9]  
Kim Y, 2003, INT J SOLIDS STRUCT, V40, P6267, DOI [10.1016/S0020-7683(03)00392-5, 10.1016/S0020-7638(03)00392-5]
[10]   Quantification of constraint on elastic-plastic 3D crack front by the J-A2 three-term solution [J].
Kim, Y ;
Zhu, XK ;
Chao, YJ .
ENGINEERING FRACTURE MECHANICS, 2001, 68 (07) :895-914