Positive Solutions of an Initial Value Problem for Nonlinear Fractional Differential Equations

被引:25
作者
Baleanu, D. [1 ,2 ]
Mohammadi, H. [3 ]
Rezapour, Sh. [3 ]
机构
[1] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Bucharest, Romania
[3] Azarbaijan Univ Shahid Madani, Dept Math, Tabriz, Iran
关键词
BANACH-SPACES; EXISTENCE;
D O I
10.1155/2012/837437
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence and multiplicity of positive solutions for the nonlinear fractional differential equation initial value problem D(0+)(alpha)u(t) + D(0+)(beta)u(t) = f(t, u(t)), u(0) = 0, 0 < t < 1, where 0 < beta < alpha < 1, D-0+(alpha) is the standard Riemann-Liouville differentiation and f : [0,1] x [0,infinity) -> [0,infinity) is continuous. By using some fixed-point results on cones, some existence and multiplicity results of positive solutions are obtained.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :57-68
[2]  
[Anonymous], FRACTALS FRACTIONAL
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]  
[Anonymous], 1993, FRACTIONAL INTEGRALS
[5]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[6]   Remark on the existence results for fractional impulsive integrodifferential equations in Banach spaces [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2244-2247
[7]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[8]   Asymptotic integration of some nonlinear differential equations with fractional time derivative [J].
Baleanu, Dumitru ;
Agarwal, Ravi P. ;
Mustafa, Octavian G. ;
Cosulschi, Mirel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)
[9]  
Chechkin A. V., 2003, FRACT CALC APPL ANAL, P259
[10]   Global attractivity for nonlinear fractional differential equations [J].
Chen, Fulai ;
Nieto, Juan. J. ;
Zhou, Yong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :287-298