On the Dirichlet problem for variational integrals in BV

被引:27
作者
Beck, Lisa [1 ]
Schmidt, Thomas [2 ]
机构
[1] SNS Pisa, I-56126 Pisa, Italy
[2] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2013年 / 674卷
关键词
PARTIAL REGULARITY; GENERALIZED SOLUTIONS; LOWER SEMICONTINUITY; ELLIPTIC-EQUATIONS; MINIMIZERS; FUNCTIONALS; EXISTENCE; CALCULUS; THEOREM; DEFINITION;
D O I
10.1515/CRELLE.2011.188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Dirichlet problem for multidimensional variational integrals with linear growth which is formulated in a generalized way in the space of functions of bounded variation. We prove uniqueness of minimizers up to additive constants and deduce additional assertions about these constants and the possible (non-)attainment of the boundary values. Moreover, we provide several related examples. In the case of the model integral integral(Omega) root 1 + vertical bar del w vertical bar(2) dx for w : R-n superset of Omega -> R-N our results extend classical results from the scalar case N = 1-where the problem coincides with the non-parametric least area problem-to the general vectorial setting N is an element of N.
引用
收藏
页码:113 / 194
页数:82
相关论文
共 90 条
[51]   SUBLINEAR FUNCTIONS OF MEASURES + VARIATIONAL INTEGRALS [J].
GOFFMAN, C ;
SERRIN, J .
DUKE MATHEMATICAL JOURNAL, 1964, 31 (01) :159-&
[52]  
Gregori G, 1997, COMMUN PART DIFF EQ, V22, P581
[53]  
HAMBURGER C, 1992, J REINE ANGEW MATH, V431, P7
[54]  
Hao W., 1996, Ann. Sc. Norm. Super. Pisa Cl. Sci., V23, P57
[55]  
JENKINS H, 1968, J REINE ANGEW MATH, V229, P170
[56]   Relaxation of signed integral functionals in BV [J].
Kristensen, Jan ;
Rindler, Filip .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) :29-62
[57]   NONEXISTENCE, NON-UNIQUENESS AND IRREGULARITY OF SOLUTIONS TO MINIMAL SURFACE SYSTEM [J].
LAWSON, HB ;
OSSERMAN, R .
ACTA MATHEMATICA, 1977, 139 (1-2) :1-17
[58]  
Lebesgue H., 1902, THESIS
[59]   On the definition and the lower semicontinuity of certain quasiconvex integrals [J].
Marcellini, Paolo .
Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1986, 3 (05) :391-409
[60]   Nonlinear elliptic systems with general growth [J].
Marcellini, P ;
Papi, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :412-443