On the Dirichlet problem for variational integrals in BV

被引:27
作者
Beck, Lisa [1 ]
Schmidt, Thomas [2 ]
机构
[1] SNS Pisa, I-56126 Pisa, Italy
[2] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2013年 / 674卷
关键词
PARTIAL REGULARITY; GENERALIZED SOLUTIONS; LOWER SEMICONTINUITY; ELLIPTIC-EQUATIONS; MINIMIZERS; FUNCTIONALS; EXISTENCE; CALCULUS; THEOREM; DEFINITION;
D O I
10.1515/CRELLE.2011.188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Dirichlet problem for multidimensional variational integrals with linear growth which is formulated in a generalized way in the space of functions of bounded variation. We prove uniqueness of minimizers up to additive constants and deduce additional assertions about these constants and the possible (non-)attainment of the boundary values. Moreover, we provide several related examples. In the case of the model integral integral(Omega) root 1 + vertical bar del w vertical bar(2) dx for w : R-n superset of Omega -> R-N our results extend classical results from the scalar case N = 1-where the problem coincides with the non-parametric least area problem-to the general vectorial setting N is an element of N.
引用
收藏
页码:113 / 194
页数:82
相关论文
共 90 条
[31]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[32]   A PRIORI MAJORATION RELATING TO NON-PARAMETRICAL MINIMAL HYPERSURFACES [J].
BOMBIERI, E ;
DEGIORGI, E ;
MIRANDA, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1969, 32 (04) :255-&
[33]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[34]  
De Giorgi E., 1960, SEMINARIO MATEMATICA
[35]  
EKELAND I, 1972, CR ACAD SCI A MATH, V275, P1057
[36]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[37]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[38]   Partial regularity for minimizers of convex integrals with L log L-growth [J].
Esposito, L ;
Mingione, G .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (01) :107-125
[39]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[40]   Regularity results for minimizers of irregular integrals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
FORUM MATHEMATICUM, 2002, 14 (02) :245-272