On the Dirichlet problem for variational integrals in BV

被引:27
作者
Beck, Lisa [1 ]
Schmidt, Thomas [2 ]
机构
[1] SNS Pisa, I-56126 Pisa, Italy
[2] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2013年 / 674卷
关键词
PARTIAL REGULARITY; GENERALIZED SOLUTIONS; LOWER SEMICONTINUITY; ELLIPTIC-EQUATIONS; MINIMIZERS; FUNCTIONALS; EXISTENCE; CALCULUS; THEOREM; DEFINITION;
D O I
10.1515/CRELLE.2011.188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Dirichlet problem for multidimensional variational integrals with linear growth which is formulated in a generalized way in the space of functions of bounded variation. We prove uniqueness of minimizers up to additive constants and deduce additional assertions about these constants and the possible (non-)attainment of the boundary values. Moreover, we provide several related examples. In the case of the model integral integral(Omega) root 1 + vertical bar del w vertical bar(2) dx for w : R-n superset of Omega -> R-N our results extend classical results from the scalar case N = 1-where the problem coincides with the non-parametric least area problem-to the general vectorial setting N is an element of N.
引用
收藏
页码:113 / 194
页数:82
相关论文
共 90 条
[1]   NEW LOWER SEMICONTINUITY RESULTS FOR POLYCONVEX INTEGRALS [J].
ACERBI, E ;
DALMASO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (03) :329-372
[2]  
ACERBI E, 1987, ARCH RATION MECH AN, V99, P261
[3]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[4]   ON THE RELAXATION IN BV(OMEGA R(M)) OF QUASI-CONVEX INTEGRALS [J].
AMBROSIO, L ;
DALMASO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 109 (01) :76-97
[5]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[6]  
[Anonymous], 1968, Boll. Unione Mat. Ital.
[7]  
[Anonymous], 1984, MINIMAL SURFACES FUN
[8]  
[Anonymous], 2003, SOBOLEV SPACES
[9]  
[Anonymous], 2003, LECT NOTES MATH
[10]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002