Conductance fluctuations in graphene systems: The relevance of classical dynamics

被引:18
作者
Ying, Lei [1 ]
Huang, Liang [1 ,2 ,3 ]
Lai, Ying-Cheng [1 ,4 ,5 ]
Grebogi, Celso [5 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Gansu, Peoples R China
[3] Lanzhou Univ, Inst Computat Phys & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Univ Aberdeen, Univ London Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 24期
关键词
QUANTUM-CHAOTIC SCATTERING; BALLISTIC CAVITIES; TRANSPORT; GRAPHITE; LOCALIZATION; QUANTIZATION; PHASE; SOFT; GAS;
D O I
10.1103/PhysRevB.85.245448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conductance fluctuations associated with transport through quantum-dot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. However, we find that in graphene quantum-dot systems, when a magnetic field is present, signatures of classical dynamics can disappear and universal scaling behaviors emerge. In particular, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. By carrying out a detailed analysis of two types of integrable (hexagonal and square) and one type of chaotic (stadium) graphene dot system, we uncover a universal scaling law among the critical Fermi energy, the critical magnetic flux, and the dot size. We develop a physical theory based on the emergence of edge states and the evolution of Landau levels (as in quantum Hall effect) to understand these experimentally testable behaviors.
引用
收藏
页数:7
相关论文
共 59 条
[1]   QUANTUM POINT CONTACTS IN MAGNETIC-FIELDS [J].
ANDO, T .
PHYSICAL REVIEW B, 1991, 44 (15) :8017-8027
[2]  
[Anonymous], 1995, ELECT TRANSPORT MESO
[3]  
[Anonymous], 1999, QUANTUM CHAOS INTRO, DOI DOI 10.1017/CBO9780511524622
[4]   Isolated resonances in conductance fluctuations and hierarchical states -: art. no. 016211 [J].
Bäcker, A ;
Manze, A ;
Huckestein, B ;
Ketzmerick, R .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016211
[5]   Inner and outer edge states in graphene rings: A numerical investigation [J].
Bahamon, D. A. ;
Pereira, A. L. C. ;
Schulz, P. A. .
PHYSICAL REVIEW B, 2009, 79 (12)
[6]   Quantum-chaotic scattering effects in semiconductor microstructures [J].
Baranger, Harold U. ;
Jalabert, Rodolfo A. ;
Stone, A. Douglas .
CHAOS, 1993, 3 (04) :665-682
[7]   WEAK-LOCALIZATION AND INTEGRABILITY IN BALLISTIC CAVITIES [J].
BARANGER, HU ;
JALABERT, RA ;
STONE, AD .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3876-3879
[8]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[9]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[10]   Quantum transport in open mesoscopic cavities [J].
Bird, JP ;
Ishibashi, K ;
Aoyagi, Y ;
Sugano, T ;
Akis, R ;
Ferry, DK ;
Pivin, DP ;
Connolly, KM ;
Taylor, RP ;
Newbury, R ;
Olatona, DM ;
Micolich, A ;
Wirtz, R ;
Ochiai, Y ;
Okubo, Y .
CHAOS SOLITONS & FRACTALS, 1997, 8 (7-8) :1299-1324