Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces

被引:27
作者
Fukhar-ud-din, H. [1 ,2 ]
Khan, A. R. [1 ]
Akhtar, Z. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Islamia Univ Bahawalpur, Dept Math, Bahawalpur 63100, Pakistan
关键词
Averaging Krasnosel'skii iterations; Convex metric space; Fixed point; Generalized nonexpansive map; Strong convergence; THEOREMS; APPROXIMATION; CONVERGENCE; MAPPINGS;
D O I
10.1016/j.na.2012.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of a unique fixed point of a map satisfying a very general contractive condition on a suitable subset of a uniformly convex metric space is proved. This fixed point is approximated by averaging Krasnosel'skii iterations of a generalized nonexpansive map. Our results substantially improve and extend several known results existing in the literature. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4747 / 4760
页数:14
相关论文
共 27 条
[1]  
Beg I, 2005, ARCH MATH-BRNO, V41, P389
[2]  
BLUMENTHAL LM, 1953, DISTANCE GEOMETRY
[4]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[5]   Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces [J].
Fukhar-ud-din, Hafiz ;
Khan, Abdul Rahim .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (09) :1349-1360
[6]  
Goebel K., 1973, Boll. Un. Mat. Ital, V7, P67
[7]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[8]   GENERALIZATION OF A FIXED-POINT THEOREM OF REICH [J].
HARDY, GE ;
ROGERS, TD .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (02) :201-206
[9]  
Hussain N., MULTISTEP IMPL UNPUB
[10]   SOME RESULTS ON FIXED POINTS .2. [J].
KANNAN, R .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (04) :405-&