Uncertainty quantification for multiscale simulations

被引:28
作者
DeVolder, B
Glimm, J
Grove, JW
Kang, Y
Lee, Y
Pao, K
Sharp, DH
Ye, K
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[3] Brookhaven Natl Lab, Ctr Data Intens Comp, Upton, NY 11973 USA
来源
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME | 2002年 / 124卷 / 01期
关键词
D O I
10.1115/1.1445139
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A general discussion of the quantification of uncertainty in numerical simulations is presented. A principal conclusion is that the distribution of solution errors is the leading term in the assessment of the validity of a simulation and its associated uncertainty in the Bayesian framework. Key issues that arise in uncertainty quantification are discussed for two examples drawn from shock wave physics and modeling of petroleum reservoirs. Solution error models, confidence intervals and Gaussian error statistics based on simulation studies are presented.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 41 条
[1]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[2]  
BABUSKA I, 1983, ADAPTIVE COMPUTATION, P57
[3]   Density dependence of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts [J].
Cheng, BL ;
Glimm, J ;
Sharp, DH .
PHYSICS LETTERS A, 2000, 268 (4-6) :366-374
[4]  
CHRISTIE MA, 2000, P 7 EUR C MATH OIL R
[5]   Parallel simulated annealing by mixing of states [J].
Chu, KW ;
Deng, YF ;
Reinitz, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :646-662
[6]  
COCKBURN B, 1998, SIMPLE INTRO ERROR E
[7]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[8]  
DEVOLDER BG, 2000, LAUR006039 LANL
[9]  
FRENCH S, 1997, PRACTICE BAYESIAN AN
[10]   AN S-MATRIX THEORY FOR CLASSICAL NONLINEAR PHYSICS [J].
GLIMM, J ;
SHARP, DH .
FOUNDATIONS OF PHYSICS, 1986, 16 (02) :125-141