On certain Euler difference sequence spaces of fractional order and related dual properties

被引:0
作者
Kadak, Ugur [1 ]
Baliarsingh, P. [2 ]
机构
[1] Bozok Univ, Dept Math, TR-66100 Yozgat, Turkey
[2] KIIT Univ, Sch Appl Sci, Dept Math, Bhubaneswar, Orissa, India
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2015年 / 8卷 / 06期
关键词
Euler sequence spaces of nonabsolute type; linear operator; matrix transformations; alpha-; beta- and gamma-duals;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to generalize the Euler sequences of nonabsolute type by introducing a generalized Euler mean difference operator E-r(Delta(((alpha) over tilde))) of order alpha. We investigate their topological structures as well as some interesting results concerning the operator E-r(Delta(((alpha) over tilde))) for a proper fraction (alpha) over tilde. Also we obtain the alpha-, beta- and gamma-duals of these sets.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 23 条
[1]  
Ahamad Z.U., 1987, Publ. Inst. Math, V42, P57
[2]   On the Euler sequence spaces which include the spaces lp and l∞I [J].
Altay, B ;
Basar, F ;
Mursaleen, M .
INFORMATION SCIENCES, 2006, 176 (10) :1450-1462
[3]  
Altay B., 2006, Southeast Asian Bull. Math., V30, P209
[4]  
Altay B., 2005, Ukrainian Math. J., V57, P1
[5]   Some new difference sequence spaces [J].
Aydin, C ;
Basar, F .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (03) :677-693
[6]   A unifying approach to the difference operators and their applications [J].
Baliarsingh, P. ;
Dutta, S. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01) :49-+
[7]   On the classes of fractional order difference sequence spaces and their matrix transformations [J].
Baliarsingh, P. ;
Dutta, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 :665-674
[8]   Some new difference sequence spaces of fractional order and their dual spaces [J].
Baliarsingh, P. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9737-9742
[9]  
Baliarsingh P., 2015, Journal of the Egyptian Mathematical Society, V23, P297
[10]  
Basar F., 2012, SUMMABILITY THEORY I, P2022, DOI [10.2174/97816080545231120101, DOI 10.2174/97816080545231120101]