On certain Euler difference sequence spaces of fractional order and related dual properties

被引:0
作者
Kadak, Ugur [1 ]
Baliarsingh, P. [2 ]
机构
[1] Bozok Univ, Dept Math, TR-66100 Yozgat, Turkey
[2] KIIT Univ, Sch Appl Sci, Dept Math, Bhubaneswar, Orissa, India
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2015年 / 8卷 / 06期
关键词
Euler sequence spaces of nonabsolute type; linear operator; matrix transformations; alpha-; beta- and gamma-duals;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to generalize the Euler sequences of nonabsolute type by introducing a generalized Euler mean difference operator E-r(Delta(((alpha) over tilde))) of order alpha. We investigate their topological structures as well as some interesting results concerning the operator E-r(Delta(((alpha) over tilde))) for a proper fraction (alpha) over tilde. Also we obtain the alpha-, beta- and gamma-duals of these sets.
引用
收藏
页码:997 / 1004
页数:8
相关论文
共 23 条
  • [1] Ahamad Z.U., 1987, Publ. Inst. Math, V42, P57
  • [2] On the Euler sequence spaces which include the spaces lp and l∞I
    Altay, B
    Basar, F
    Mursaleen, M
    [J]. INFORMATION SCIENCES, 2006, 176 (10) : 1450 - 1462
  • [3] Altay B., 2006, Southeast Asian Bull. Math., V30, P209
  • [4] Altay B., 2005, Ukrainian Math. J., V57, P1
  • [5] Some new difference sequence spaces
    Aydin, C
    Basar, F
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (03) : 677 - 693
  • [6] A unifying approach to the difference operators and their applications
    Baliarsingh, P.
    Dutta, S.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 49 - +
  • [7] On the classes of fractional order difference sequence spaces and their matrix transformations
    Baliarsingh, P.
    Dutta, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 665 - 674
  • [8] Some new difference sequence spaces of fractional order and their dual spaces
    Baliarsingh, P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) : 9737 - 9742
  • [9] Baliarsingh P., 2015, Journal of the Egyptian Mathematical Society, V23, P297
  • [10] Basar F., 2012, SUMMABILITY THEORY I, P2022, DOI [10.2174/97816080545231120101, DOI 10.2174/97816080545231120101]