Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting

被引:245
作者
Yang, C. H. [1 ]
Rossi, A. [1 ]
Ruskov, R. [2 ]
Lai, N. S. [1 ]
Mohiyaddin, F. A. [1 ]
Lee, S. [3 ]
Tahan, C. [2 ]
Klimeck, G. [3 ]
Morello, A. [1 ]
Dzurak, A. S. [1 ]
机构
[1] Univ New S Wales, Sch Elect Engn & Telecommun, Australian Res Council, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Lab Phys Sci, College Pk, MD 20740 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
ELECTRON-SPIN;
D O I
10.1038/ncomms3069
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure the formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3-0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin read-out and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 s. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] VALLEY SPLITTING IN THE SILICON INVERSION LAYER - MISORIENTATION EFFECTS
    ANDO, T
    [J]. PHYSICAL REVIEW B, 1979, 19 (06): : 3089 - 3095
  • [2] ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS
    ANDO, T
    FOWLER, AB
    STERN, F
    [J]. REVIEWS OF MODERN PHYSICS, 1982, 54 (02) : 437 - 672
  • [3] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    [J]. NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [4] [Anonymous], 2004, DESS V10 MAN
  • [5] GLOBAL APPROXIMATE NEWTON METHODS
    BANK, RE
    ROSE, DJ
    [J]. NUMERISCHE MATHEMATIK, 1981, 37 (02) : 279 - 295
  • [6] Measurement of valley splitting in high-symmetry Si/SiGe quantum dots
    Borselli, M. G.
    Ross, R. S.
    Kiselev, A. A.
    Croke, E. T.
    Holabird, K. S.
    Deelman, P. W.
    Warren, L. D.
    Alvarado-Rodriguez, I.
    Milosavljevic, I.
    Ku, F. C.
    Wong, W. S.
    Schmitz, A. E.
    Sokolich, M.
    Gyure, M. F.
    Hunter, A. T.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (12)
  • [7] Valley splitting in strained silicon quantum wells
    Boykin, TB
    Klimeck, G
    Eriksson, MA
    Friesen, M
    Coppersmith, SN
    von Allmen, P
    Oyafuso, F
    Lee, S
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (01) : 115 - 117
  • [8] Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling
    Bulaev, DV
    Loss, D
    [J]. PHYSICAL REVIEW B, 2005, 71 (20)
  • [9] Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots
    Culcer, Dimitrie
    Saraiva, A. L.
    Koiller, Belita
    Hu, Xuedong
    Das Sarma, S.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [10] Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots
    Culcer, Dimitrie
    Hu, Xuedong
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2010, 82 (20)