Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting

被引:256
作者
Yang, C. H. [1 ]
Rossi, A. [1 ]
Ruskov, R. [2 ]
Lai, N. S. [1 ]
Mohiyaddin, F. A. [1 ]
Lee, S. [3 ]
Tahan, C. [2 ]
Klimeck, G. [3 ]
Morello, A. [1 ]
Dzurak, A. S. [1 ]
机构
[1] Univ New S Wales, Sch Elect Engn & Telecommun, Australian Res Council, Ctr Excellence Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Lab Phys Sci, College Pk, MD 20740 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
ELECTRON-SPIN;
D O I
10.1038/ncomms3069
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure the formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3-0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin read-out and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 s. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.
引用
收藏
页数:8
相关论文
共 51 条
[1]   VALLEY SPLITTING IN THE SILICON INVERSION LAYER - MISORIENTATION EFFECTS [J].
ANDO, T .
PHYSICAL REVIEW B, 1979, 19 (06) :3089-3095
[2]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[3]   Gate-defined quantum dots in intrinsic silicon [J].
Angus, Susan J. ;
Ferguson, Andrew J. ;
Dzurak, Andrew S. ;
Clark, Robert G. .
NANO LETTERS, 2007, 7 (07) :2051-2055
[4]  
[Anonymous], 2004, DESS V10 MAN
[5]   GLOBAL APPROXIMATE NEWTON METHODS [J].
BANK, RE ;
ROSE, DJ .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :279-295
[6]   Measurement of valley splitting in high-symmetry Si/SiGe quantum dots [J].
Borselli, M. G. ;
Ross, R. S. ;
Kiselev, A. A. ;
Croke, E. T. ;
Holabird, K. S. ;
Deelman, P. W. ;
Warren, L. D. ;
Alvarado-Rodriguez, I. ;
Milosavljevic, I. ;
Ku, F. C. ;
Wong, W. S. ;
Schmitz, A. E. ;
Sokolich, M. ;
Gyure, M. F. ;
Hunter, A. T. .
APPLIED PHYSICS LETTERS, 2011, 98 (12)
[7]   Valley splitting in strained silicon quantum wells [J].
Boykin, TB ;
Klimeck, G ;
Eriksson, MA ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
APPLIED PHYSICS LETTERS, 2004, 84 (01) :115-117
[8]   Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling [J].
Bulaev, DV ;
Loss, D .
PHYSICAL REVIEW B, 2005, 71 (20)
[9]   Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots [J].
Culcer, Dimitrie ;
Saraiva, A. L. ;
Koiller, Belita ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[10]   Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots [J].
Culcer, Dimitrie ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (20)